Höytö A, Herrala M, Luukkonen J, Juutilainen J, Naarala J. · 2017
Finnish researchers exposed human brain cells to 50 Hz magnetic fields from power lines for 24 hours. The fields increased harmful superoxide molecules in cells and enhanced DNA damage when combined with blue light, showing magnetic fields can affect cells independently of light exposure.
Giorgi G et al. · 2017
Researchers exposed human brain cells to power line magnetic fields alone and with cellular stress. While magnetic fields alone caused minor DNA changes, combining them with stress significantly altered DNA patterns that control genes. Most changes reversed, showing cells can recover.
Falone S et al. · 2017
Researchers exposed human neuroblastoma cells (a type of brain cancer cell) to 50 Hz magnetic fields at levels similar to those found near power lines. The magnetic field exposure made the cancer cells grow faster and become more resistant to cancer treatment drugs by activating the cells' natural defense systems. This suggests that power-frequency magnetic fields might make certain brain cancers more aggressive and harder to treat.
Dornelles EB et al. · 2017
Researchers exposed human blood cells to static magnetic fields for up to 6 hours, finding that people with certain genetic variations experienced significantly more cell death and damage. This suggests genetic differences may make some individuals more vulnerable to magnetic field exposure than others.
Djordjevic NZ, Paunović MG, Peulić AS · 2017
Researchers exposed rats to 50 Hz electromagnetic fields (the type from power lines and household wiring) for one week and found the animals developed anxiety-like behaviors. Brain analysis revealed increased oxidative stress and nitric oxide in the hypothalamus, the brain region that regulates emotions and stress responses. This suggests that even short-term exposure to extremely low frequency EMFs can alter brain chemistry in ways that affect mood and behavior.
Cichoń N et al. · 2017
Researchers studied whether extremely low-frequency electromagnetic fields could help stroke patients recover by examining brain chemistry changes. They exposed 48 stroke patients to 40 Hz magnetic fields for 15 minutes daily during rehabilitation and found increased levels of nitric oxide (a brain chemical involved in healing) plus improved mental and daily functioning. This suggests that specific EMF exposures might actually support brain recovery after stroke.
Calcabrini C et al. · 2017
Researchers exposed human skin cells to 50 Hz electromagnetic fields for one hour. The fields caused temporary oxidative stress (cellular damage from harmful molecules) at moderate strengths, but cells recovered completely within 24 hours, suggesting no lasting harm occurs.
Yang L, Chen Q, Lv B, Wu T. · 2016
Researchers exposed people to electromagnetic fields from LTE cell phone technology (4G networks) and measured their brain activity using EEG. They found that LTE exposure reduced brain wave activity in the alpha and beta frequency bands, particularly in areas of the brain responsible for thinking and processing. This suggests that modern wireless technology can measurably alter normal brain function patterns.
Silva V et al. · 2016
Researchers exposed human thyroid cells from surgical patients to cell phone-like radiofrequency radiation and tested for cancer-related changes. They found no effects on cell growth markers, DNA damage indicators, or stress proteins that typically signal cellular harm. The study suggests that under these specific conditions, cell phone radiation did not trigger cancer-promoting changes in thyroid cells.
Sato Y, Kiyohara K, Kojimahara N, Yamaguchi N. · 2016
Japanese researchers analyzed brain cancer rates among young adults from 1993 to 2010 to see if rising mobile phone use could explain increasing cancer incidence. While they found brain cancer rates did increase during this period (ranging from 2.7% to 12.3% annually depending on age and gender), the patterns didn't match what would be expected from mobile phone exposure. The study concluded that heavy mobile phone use cannot explain the overall increase in brain cancers among young Japanese adults.
Roser K, Schoeni A, Röösli M · 2016
Swiss researchers followed 439 adolescents aged 12-17 for one year to see if mobile phone use affected their behavior and concentration. While they found some short-term associations between phone use and behavioral problems, these disappeared when they tracked the teens over time. The study concluded that mobile phone radiation doesn't appear to cause lasting behavioral problems or concentration issues in adolescents.
Redmayne M et al. · 2016
Australian researchers followed primary school children to see if using mobile and cordless phones affected their thinking skills and memory. They found very little evidence that phone use impacted cognitive function, with only 5 out of 78 measured outcomes showing any differences between phone users and non-users. The study suggests that at typical usage levels for young children, these devices don't appear to significantly harm developing cognitive abilities.
Nakatani-Enomoto S et al. · 2016
Researchers exposed human sperm samples to cell phone-like radiation (1950 MHz) for one hour at two different power levels to see if it affected sperm movement or caused DNA damage. They found no significant changes in sperm motility, movement patterns, or DNA damage markers compared to unexposed samples. This study suggests that short-term exposure to this type of radiation may not immediately harm sperm function under controlled laboratory conditions.
Lewis RC et al. · 2016
Researchers studied 153 men at a fertility clinic to see if mobile phone use affected sperm quality. They found no connection between how much men used their phones, where they carried them, or whether they used headsets and their semen parameters. This adds to the mixed evidence about whether cell phones impact male fertility.
Leng L, Zhang Y. · 2016
Researchers in China studied 204 people with pituitary tumors and 246 healthy controls to identify risk factors for these brain tumors. They found that mobile phone use and longer duration of use were associated with increased risk of developing pituitary tumors. This suggests that radiofrequency radiation from cell phones may contribute to tumor development in the pituitary gland, which controls many hormonal functions in the body.
Calvente I et al. · 2016
Spanish researchers measured radiofrequency radiation around the homes of 123 ten-year-old boys and tested their cognitive abilities and behavior. While most measures showed no effects, boys living in areas with higher RF exposure (though still below safety guidelines) had lower verbal skills and higher rates of anxiety-related behaviors compared to those in lower exposure areas. The researchers cautioned that study limitations prevent drawing definitive conclusions.
Reale M et al. · 2016
Researchers exposed human brain cells to extremely low frequency electromagnetic fields (the type from power lines) for up to 48 hours to see if it would cause neurological damage. They found no significant harmful effects on the cells' ability to manage oxidative stress or inflammation, though there were minor changes in serotonin metabolism. The study suggests that ELF-EMF exposure at these levels is unlikely to contribute to neurodegenerative diseases.
Andrianome S et al. · 2016
Researchers compared melatonin levels (a hormone that regulates sleep) between 30 people who report electromagnetic sensitivity and 25 people who don't, without exposing either group to EMF sources. While the sensitive group scored significantly worse on sleep quality questionnaires, both groups had identical melatonin levels in their saliva and urine. This suggests that whatever is causing sleep problems in electromagnetically sensitive individuals, it's not affecting their body's natural melatonin production.
Nakatani-Enomoto S et al. · 2016
Researchers exposed human sperm samples to cell phone-like radio frequency radiation at 1950 MHz for one hour at levels of 2.0 or 6.0 watts per kilogram. They found no significant effects on sperm movement, speed, or DNA damage compared to unexposed samples. The study suggests that short-term exposure to this type of radiation under controlled temperature conditions does not harm sperm quality.
Roser K, Schoeni A, Röösli M · 2016
Swiss researchers followed 439 adolescents for one year to see if cell phone use affected their behavior and concentration. While they found some connections in initial snapshots, these links disappeared when tracking the teens over time. The study concludes that mobile phone radiation doesn't cause behavioral problems or concentration issues in teenagers.
Redmayne M et al. · 2016
Australian researchers studied 619 primary school children (ages 8-11) to see if using mobile phones and cordless phones affected their thinking abilities and reaction times. The children used phones very little (about 2-3 calls per week), and the study found almost no differences in cognitive performance between phone users and non-users. Only 5 out of 78 different measurements showed any statistical differences, suggesting phone use at these low levels doesn't meaningfully impact children's brain function.
Calvente I et al. · 2016
Spanish researchers measured radiofrequency electromagnetic field exposure around the homes of 123 ten-year-old boys and tested their cognitive abilities and behavior. Boys living in areas with higher RF exposure (though still below safety guidelines) showed some concerning patterns including lower verbal skills and higher rates of anxiety-related problems. While the study found mostly no effects, the few significant associations raise questions about environmental RF exposure during critical brain development years.
Bhagat S, Varshney S, Bist SS, Goel D, Mishra S, Jha VK · 2016
Researchers tested whether long-term mobile phone use affects hearing by comparing the phone-using ear to the non-phone-using ear in 40 medical students who had used phones for over 4 years. They found no differences in hearing tests or brain response measurements between the two ears, even among heavy users (more than 60 minutes daily). The study suggests that chronic mobile phone exposure at the ear doesn't impair auditory function.
Zhang G et al. · 2016
Researchers tracked cell phone usage and sperm quality in nearly 800 Chinese college students over three years. They found that men who talked on their phones longer each day had significantly lower sperm concentration, reduced sperm count, and decreased semen volume. The effects were particularly strong for internet use on cellular networks, suggesting that regular cell phone use may harm male fertility.
Waldmann-Selsam C et al. · 2016
German researchers studied 120 trees near cell phone towers over nine years and found that trees closest to the towers developed damage on the side facing the antenna, while trees in low-radiation areas showed no damage. The damage patterns directly correlated with radiofrequency radiation measurements, with higher exposure levels corresponding to more severe tree damage. This suggests that RF radiation from cell towers can cause biological harm to living organisms at environmental exposure levels.