Glenister H · 1998
Researchers from the UK's Medical Devices Agency investigated how mobile phones and other wireless communication devices interfere with medical equipment in hospitals. They found that emergency services' radio handsets caused the most interference with sensitive medical devices. The study led to recommendations that cell phones be turned off in operating rooms, treatment areas, and at patients' bedsides where critical medical equipment is in use.
Freude, G, Ullsperger, P, Eggert ,S, Ruppe, I · 1998
German researchers studied how cell phone radiation affects brain wave patterns by having men perform simple finger movements and complex visual tasks while exposed to phone emissions. They found that radiation significantly altered slow brain potentials (electrical patterns that prepare the brain for action) during the demanding cognitive task, but not during simple movements. This suggests cell phone radiation can interfere with brain electrical activity during mentally challenging activities, even when performance appears normal.
Eulitz, C, Ullsperger, P, Freude, G, Elbert ,T · 1998
German researchers examined how mobile phone radiation affects brain activity by measuring electrical responses while people listened to sounds. They found that phone radiation altered specific patterns of brain activity, particularly in higher frequency brain waves when people were actively processing important sounds. This suggests mobile phones can directly change how our brains process information.
Duan L, Shan Y, Yu X · 1998
Chinese researchers tested brain function in workers exposed to high-frequency electromagnetic radiation using standardized tests recommended by the World Health Organization. They found that exposed workers scored significantly lower on multiple brain performance measures compared to unexposed controls, and these changes correlated with symptoms of neurasthenia (a condition involving mental fatigue and cognitive difficulties). This suggests that occupational exposure to high-frequency EMF can measurably impair cognitive function.
Ding G, Xie X, Zhang L et al. · 1998
Researchers exposed rats to electromagnetic pulses and examined brain tissue to see how it affected nitric oxide synthase (NOS), an enzyme crucial for learning and memory. They found that EMF exposure significantly reduced NOS activity in the hippocampus (the brain's memory center) for up to 48 hours after exposure. This reduction in brain chemistry directly correlates with the learning and memory problems that EMF exposure causes in laboratory animals.
Daniells et al. · 1998
Scientists exposed genetically modified nematode worms to microwave radiation at 750 and 300 MHz frequencies and measured their cellular stress responses through a special gene that acts like a biological alarm system. The worms showed significant stress responses to the microwave exposure, with the strongest effects occurring closest to the radiation source and weaker responses at lower power levels. This suggests the radiation was causing cellular damage similar to what toxic metals produce, rather than simple heating effects.
Chiang H · 1998
This study examined how electromagnetic fields affect the way cells communicate with each other through tiny channels called gap junctions. The researchers found that both microwave and extremely low frequency (ELF) electromagnetic fields can disrupt this cellular communication by interfering with proteins that control the gap junction channels. This disruption could potentially affect how tissues coordinate their functions and maintain normal cellular processes.
Braune, S, Wrocklage, C, Raczek, J, Gailus, T, Lucking, CH · 1998
German researchers exposed 10 healthy volunteers to GSM 900 MHz cell phone radiation for 35 minutes while continuously monitoring their blood pressure and heart rate. They found that resting blood pressure increased during exposure to the phone's electromagnetic field compared to a placebo condition. This suggests that even short-term exposure to cell phone radiation can affect cardiovascular function in healthy individuals.
Bergdahl J, Tillberg A, Stenman E. · 1998
Swedish researchers examined 28 patients who reported health symptoms they believed were caused by electricity or computer screens (visual display units). The study found these patients had various dental and oral health problems, including jaw dysfunction, mouth burning, and reduced saliva production. While the study couldn't prove electricity caused these symptoms, it suggests that dental health issues might contribute to the suffering experienced by people who report electrical sensitivity.
Bassen HI, Moore HJ, Ruggera PS · 1998
Researchers tested how digital cell phones affect implantable cardioverter-defibrillators (ICDs), medical devices that shock the heart back into rhythm during dangerous arrhythmias. They found that phones using TDMA technology could cause ICDs to malfunction when held within 2-6 centimeters of the device, either preventing necessary pacing or triggering inappropriate high-voltage shocks. The interference stopped immediately when phones were moved away from the ICD.
Walters TJ et al. · 1998
Scientists exposed rats to 2.06 GHz microwave radiation and measured brain temperatures. High-power microwaves created uneven heating patterns, with some brain areas heating 2-2.5 times faster than nearby regions. This uneven heating didn't occur with conventional heat sources like warm water.
Szmigielski et al. · 1998
Researchers studied 61 workers exposed to radio frequency electromagnetic fields and found their natural daily blood pressure and heart rate patterns were disrupted - the normal peaks and valleys were flattened and shifted earlier, suggesting EMF exposure interferes with the body's cardiovascular rhythms.
Novoselova ET, Fesenko EE. · 1998
Russian researchers exposed mice to extremely weak microwave radiation (8.15-18 GHz) at power levels 1,000 times lower than cell phones. The exposure significantly increased production of tumor necrosis factor, a key immune protein, suggesting even very low-level microwaves can alter immune function.
Nakamura et al. · 1998
Researchers exposed pregnant rats to microwave radiation at 2.45 GHz for 90 minutes and found it suppressed natural killer cells, which fight infections and cancer. This immune suppression occurred through the body's opioid system, showing microwave exposure can weaken immunity during pregnancy when protection is most critical.
Mickley GA, Cobb BL · 1998
Researchers exposed rats to microwave radiation at levels that caused significant body heating and found it disrupted their ability to distinguish between familiar and new objects - a key indicator of working memory function. However, rats that had been previously exposed to the heating developed a tolerance that protected them from both the temperature increase and memory problems. The study suggests that microwave-induced heating can impair cognitive function, but the brain may adapt to protect itself from repeated exposures.
Loscher W, Kas G, · 1998
German researchers studied dairy cows living near TV and cell phone transmission towers and found significant behavioral abnormalities over a two-year period. When they moved an affected cow 20 kilometers away from the antennas, its behavior completely normalized within five days, but the problems returned when the cow was brought back. The study suggests that radiofrequency electromagnetic fields from the transmission equipment were the likely cause of these behavioral changes.
Novoselova ET, Fesenko EE. · 1998
Russian researchers exposed mice to extremely weak microwave radiation (8.15-18 GHz at 1 microW/cm²) and found it significantly increased production of tumor necrosis factor in immune cells called macrophages. Tumor necrosis factor is a key protein that triggers inflammation and immune responses in the body. This suggests that even very low-power microwave radiation can alter immune system function.
Jauchem JR et al. · 1998
Researchers exposed 10 anesthetized rats to ultra-wideband electromagnetic pulses at very high intensities (87-104 kV/m electric field strength) for two minutes and monitored their heart rate and blood pressure. They found no immediate changes in either cardiovascular measure during or after exposure. This suggests that short-term exposure to these specific high-intensity electromagnetic pulses does not cause immediate cardiovascular effects in rats.
Grigor'ev IuG, Stepanov VS · 1998
Russian researchers exposed developing chick embryos to electromagnetic fields at power densities between 0.4 and 10 mW/cm2 and found these exposures could alter memory formation (imprinting) processes in the brain. The study showed that EMF exposure during embryonic development left lasting changes in brain function that persisted after hatching. This suggests electromagnetic fields can interfere with critical brain development processes during vulnerable developmental periods.
Behari J, Kunjilwar KK, and Pyne S · 1998
Researchers exposed developing rats to radiofrequency radiation similar to what cell phones emit and found it significantly increased activity of a critical brain enzyme called Na+-K+-ATPase by 15-20%. This enzyme is essential for nerve cell function and brain development. The findings suggest that RF radiation can alter fundamental brain chemistry in developing animals, raising concerns about potential effects on brain development in children.
Adair ER, Kelleher SA, Mack GW, Morocco TS, · 1998
Researchers exposed seven people to 450 MHz radio waves for 45 minutes to study heat effects. The RF energy increased sweating but participants' bodies successfully maintained normal core temperature through natural cooling. This shows human thermoregulation can handle these RF exposure levels effectively.
Phillips et al. · 1998
Researchers exposed immune system cells to radiofrequency radiation from cell phone signals at extremely low power levels for 2 to 21 hours. They found that very low exposures actually reduced DNA damage, while slightly higher exposures increased DNA breaks in the cellular genetic material. This suggests that even minimal RF radiation can alter DNA integrity in immune cells, though the effects varied depending on the specific exposure level.
Kavaliers M, Choleris E, Prato FS, Ossenkopp K · 1998
Researchers exposed land snails to 60-Hz magnetic fields from power lines and found the fields disrupted the animals' natural pain relief systems by altering brain chemistry. This shows that common household electrical frequencies can interfere with basic biological processes controlling pain in living organisms.
Phillips et al. · 1998
Researchers exposed immune cells to cell phone radiation at different power levels and measured DNA damage. They found that very low levels of radiation actually reduced DNA damage, while slightly higher levels increased it. This suggests that cell phone radiation can affect DNA in ways that depend on the specific exposure level.
Vollrath L, Spessert R, Kratzsch T, Keiner M, Hollmann H · 1997
German researchers exposed rats and hamsters to 900 MHz radio frequency fields (similar to early cell phones) for up to 6 hours to see if it would affect their pineal glands, which produce the sleep hormone melatonin. They found no changes in melatonin production or pineal gland structure at any exposure level tested. This suggests that short-term RF exposure at these levels doesn't disrupt the body's natural sleep-wake cycle regulation.