Vijayalaxmi et al. · 1997
Researchers exposed cancer-prone mice to 2450 MHz radiofrequency radiation (the same frequency used in microwave ovens and some WiFi) for 20 hours daily over 18 months to test whether it causes DNA damage. They measured micronuclei - tiny fragments that indicate genetic damage - in blood and bone marrow cells. The study found no significant difference in DNA damage between exposed and unexposed mice, suggesting this level of RF exposure did not cause detectable genetic harm.
Vijayalaxmi, Mohan, N, Meltz, ML, Wittler, MA, · 1997
Researchers exposed human blood cells to microwave radiation at 2450 MHz (the same frequency used in microwave ovens and WiFi) for 90 minutes to see if it would damage DNA or affect cell growth. They found no genetic damage, chromosome breaks, or changes in how fast the cells multiplied compared to unexposed cells. This suggests that short-term exposure to this type of radiation at these power levels may not immediately harm human blood cells.
Stark KD, Krebs T, Altpeter E, Manz B, Griot C, Abelin T · 1997
Swiss researchers studied dairy cows living near a powerful short-wave radio transmitter to see if radio frequency radiation affected their melatonin levels (a hormone that regulates sleep cycles). While they found no chronic reduction in melatonin over time, they discovered an intriguing pattern: when the transmitter was turned back on after being off for three days, cows near the transmitter showed significantly higher melatonin levels on the first night of re-exposure. This suggests radio frequency fields may cause acute disruptions to biological rhythms, even if long-term effects aren't apparent.
Stagg RB, Thomas WJ, Jones RA, Adey WR · 1997
Researchers exposed brain cells (both normal and cancerous glioma cells) to cell phone-like radiofrequency radiation at 836.55 MHz for 24 hours to see if it would promote tumor growth by affecting DNA synthesis. While they found small increases in DNA activity in some cancer cell experiments, this didn't translate to actual increased cell growth or proliferation in either normal or cancerous cells.
Sanmartin M et al. · 1997
Spanish researchers tested whether GSM cell phones interfere with implantable cardioverter defibrillators (ICDs) - devices that shock the heart back to normal rhythm during dangerous arrhythmias. They placed phones directly against the chest of 30 patients with various ICD models during calls, ringing, and conversation, monitoring for any device malfunction. No electromagnetic interference was detected, suggesting GSM phones don't disrupt these life-saving cardiac devices.
Salford LG, Brun A, Persson BRR · 1997
Researchers injected brain tumor cells into 154 pairs of rats, then exposed half to 915 MHz microwaves (the frequency used by early cell phones) for 7 hours daily over 2-3 weeks while keeping the other half as controls. They found no difference in tumor growth between exposed and unexposed rats, suggesting that microwave exposure did not accelerate existing brain tumors in this particular experimental setup.
Safronova VG et al. · 1997
Russian researchers exposed mouse immune cells (neutrophils) to 41.95 GHz millimeter waves at 150 microW/cm2 for 20 minutes to test effects on the cells' ability to produce reactive oxygen species - their primary defense mechanism. The millimeter waves reduced the cells' immune response by up to 60% when calcium levels were high, but only when calcium could enter the cells from outside. This suggests that millimeter wave radiation can interfere with normal immune cell function by disrupting calcium signaling pathways.
Ryan KL, Walters TJ, Tehrany MR, Lovelace JD, Jauchem JR · 1997
Researchers exposed rats of different ages to 35 GHz microwave radiation until death to study whether age affects how the body responds to microwave heating. They found that young, middle-aged, and older rats all showed identical patterns of rising body temperature and heart rate during exposure, with no age-related differences in survival time. This suggests that age doesn't change how mammals respond to intense microwave heating.
Roschke, J, Mann, K · 1997
German researchers exposed 34 healthy men to cell phone radiation (900 MHz) for 3.5 minutes while measuring their brain activity with EEG sensors. They found no detectable changes in brain wave patterns during the short exposure period compared to when the phone was turned off. This suggests that brief cell phone use may not immediately alter brain electrical activity in awake, healthy adults.
Malyapa RS et al. · 1997
Researchers exposed mouse and human cells to cell phone frequencies (835-847 MHz) for up to 24 hours at power levels similar to phone use to see if the radiation damaged DNA. Using a sensitive test called the comet assay, they found no DNA damage in the exposed cells compared to unexposed control cells. This suggests that cell phone radiation at typical exposure levels may not directly break DNA strands in laboratory conditions.
Klug S, Hetscher M, Giles S, Kohlsmann S, Kramer K, · 1997
German researchers exposed developing rat embryos to radio frequency electromagnetic fields at various power levels for up to 36 hours to test whether EMF exposure during critical development stages causes birth defects or growth problems. The study found no significant effects on embryo development, growth, or cellular structure across all tested exposure levels, including levels far exceeding typical telecommunication device emissions. This suggests that RF fields at these intensities may not pose developmental risks during embryonic growth.
Jauchem, JR, · 1997
Researchers reviewed studies examining how electromagnetic fields (EMFs) from power lines and radiofrequency radiation from devices like cell phones affect the human heart. They found that most studies showed no significant effects on blood pressure, heart rate, or heart rhythm patterns when exposure levels stayed below current safety standards. While some early Soviet studies in the 1960s suggested heart problems in electrical workers, later Western research could not confirm these findings.
Ivaschuk OI et al. · 1997
Researchers exposed rat nerve cells to cell phone radiation at 836.55 MHz (the frequency used by early digital cell phones) to see if it would affect the activity of genes called c-fos and c-jun, which help control cell growth and responses to stress. They found mostly no effects, except for a 38% decrease in c-jun gene activity at the highest exposure level of 9 mW/cm². This suggests that cell phone radiation may have subtle effects on nerve cell gene expression, but only at relatively high exposure levels.
Indulski JA, Makowiec-Dabrowska T, Zmyslony M, Siedlecka J · 1997
Polish researchers reviewed multiple studies examining whether electromagnetic field exposure from power lines, medical devices, computers, and household appliances affects reproductive health in workers. They analyzed data on pregnancy outcomes including miscarriages, birth defects, and low birth weight. The review found inconsistent results across studies, with no clear evidence of acute reproductive harm from occupational EMF exposure, though the authors noted that negative effects couldn't be completely ruled out.
Gos, P, Eicher, B, Kohli, J, Heyer, WD · 1997
Researchers exposed yeast cells (Saccharomyces cerevisiae) to extremely high frequency electromagnetic fields around 41.7 GHz at very low power levels to see if the radiation affected how quickly the cells divided. After careful testing with proper controls, they found no significant differences in cell division rates between exposed and unexposed yeast. This contradicts some earlier studies that claimed to find biological effects from similar EMF exposures.
Cain CD, Thomas DL, Adey WR · 1997
Researchers exposed mouse cells to cell phone-like radiation (836.55 MHz TDMA signals) for 28 days to see if it would enhance cancer cell formation when combined with a known tumor-promoting chemical. The radiation exposure at levels similar to cell phone use did not increase cancer cell formation compared to unexposed cells. This suggests that this type of radiofrequency exposure does not act as a tumor promoter in laboratory cell cultures.
Antonopoulos A, Eisenbrandt H, Obe G, · 1997
Researchers exposed human immune cells (lymphocytes) to electromagnetic fields at frequencies used by cell phones and other wireless devices (380, 900, and 1800 MHz) to see if the radiation would damage the cells' DNA or disrupt their normal growth cycle. The study found no measurable differences between cells exposed to EMF and unexposed control cells. This suggests that these specific frequencies, under the conditions tested, did not cause detectable genetic damage or cellular disruption in immune cells.
Malyapa RS et al. · 1997
Researchers exposed two types of cells (mouse and human) to cell phone radiation at frequencies used by mobile phones (835-847 MHz) for up to 24 hours to see if it caused DNA damage. They found no DNA damage in either cell type when exposed at a specific absorption rate (SAR) of 0.6 W/kg, which is below current regulatory limits. This suggests that cell phone radiation at this level may not directly break DNA strands in laboratory conditions.
Malyapa RS et al. · 1997
Researchers exposed lab-grown cells to microwave radiation at 2450 MHz (the same frequency used in microwave ovens and older WiFi) for up to 24 hours to see if it would damage DNA. Using a highly sensitive test called the comet assay, they found no DNA damage at either exposure level tested. This contradicted earlier studies that suggested microwave radiation could break DNA strands in brain cells.
Schilling, CJ · 1997
Researchers documented what happened to three antenna engineers who were accidentally exposed to high-level radiofrequency radiation (785 MHz) while working on a television mast. The men immediately felt intense heating in exposed body parts, followed by headaches, numbness, nausea, diarrhea, and skin redness, with chronic headaches persisting in the most exposed areas of their heads. This case study provides direct evidence that RF radiation can cause immediate and lasting health effects in humans at high exposure levels.
Violanti JM · 1997
Researchers analyzed accident statistics comparing drivers with and without cellular phones to see if phone ownership affected crash patterns. They found that drivers with cellular phones had significantly higher rates of accidents involving inattention, unsafe speed, hitting fixed objects, and vehicle rollovers, plus an increased risk of being killed in crashes. The study suggests that having a cellular phone correlates with more dangerous driving behaviors and worse accident outcomes.
Riu PJ, Foster KR, Blick DW, Adair ER, · 1997
Researchers measured how much microwave radiation it takes for people to feel warmth on their skin at frequencies from 2.45 to 94 GHz. They found that humans can detect a temperature increase as small as 0.07 degrees Celsius at the skin surface, and this sensitivity works the same way whether the heat receptors are right at the surface or up to 0.3 millimeters deep. This study helps establish the minimum power levels where people begin to feel thermal effects from microwave exposure.
Redelmeier DA, Tibshirani RJ · 1997
Researchers analyzed phone records from 699 drivers who had been in car accidents to see if cell phone use increased crash risk. They found that drivers were four times more likely to crash while using their phone compared to when they weren't, with hands-free devices offering no safety advantage over handheld phones. The study suggests that the mental distraction of phone conversations, not just physical handling, creates the danger.
Persson BRR, Salford LG, Brun A · 1997
Researchers exposed rats to 915 MHz microwave radiation (similar to cell phone frequencies) for periods ranging from 2 minutes to 16 hours and examined whether this damaged the blood-brain barrier, a critical protective shield that prevents toxins from entering brain tissue. They found that 39% of exposed rats showed abnormal leakage in their blood-brain barrier compared to only 17% of unexposed control rats. This suggests that wireless communication frequencies can compromise the brain's natural protective barrier, potentially allowing harmful substances to reach brain cells.
Olchowik G · 1997
Researchers exposed rats to both hydrocortisone (a steroid that weakens bones) and microwave radiation for 12 weeks to see how the combination affected bone density. Surprisingly, they found that microwave radiation appeared to protect bone tissue from the bone-weakening effects of the steroid treatment. This unexpected finding suggests microwave exposure might have some protective effects on bones under certain conditions.