Stagg RB, Thomas WJ, Jones RA, Adey WR · 1997
Researchers exposed brain cells (both normal and cancerous glioma cells) to cell phone-like radiofrequency radiation at 836.55 MHz for 24 hours to see if it would promote tumor growth by affecting DNA synthesis. While they found small increases in DNA activity in some cancer cell experiments, this didn't translate to actual increased cell growth or proliferation in either normal or cancerous cells.
Safronova VG et al. · 1997
Russian researchers exposed mouse immune cells (neutrophils) to 41.95 GHz millimeter waves at 150 microW/cm2 for 20 minutes to test effects on the cells' ability to produce reactive oxygen species - their primary defense mechanism. The millimeter waves reduced the cells' immune response by up to 60% when calcium levels were high, but only when calcium could enter the cells from outside. This suggests that millimeter wave radiation can interfere with normal immune cell function by disrupting calcium signaling pathways.
Malyapa RS et al. · 1997
Researchers exposed mouse and human cells to cell phone frequencies (835-847 MHz) for up to 24 hours at power levels similar to phone use to see if the radiation damaged DNA. Using a sensitive test called the comet assay, they found no DNA damage in the exposed cells compared to unexposed control cells. This suggests that cell phone radiation at typical exposure levels may not directly break DNA strands in laboratory conditions.
Klug S, Hetscher M, Giles S, Kohlsmann S, Kramer K, · 1997
German researchers exposed developing rat embryos to radio frequency electromagnetic fields at various power levels for up to 36 hours to test whether EMF exposure during critical development stages causes birth defects or growth problems. The study found no significant effects on embryo development, growth, or cellular structure across all tested exposure levels, including levels far exceeding typical telecommunication device emissions. This suggests that RF fields at these intensities may not pose developmental risks during embryonic growth.
Ivaschuk OI et al. · 1997
Researchers exposed rat nerve cells to cell phone radiation at 836.55 MHz (the frequency used by early digital cell phones) to see if it would affect the activity of genes called c-fos and c-jun, which help control cell growth and responses to stress. They found mostly no effects, except for a 38% decrease in c-jun gene activity at the highest exposure level of 9 mW/cm². This suggests that cell phone radiation may have subtle effects on nerve cell gene expression, but only at relatively high exposure levels.
Gos, P, Eicher, B, Kohli, J, Heyer, WD · 1997
Researchers exposed yeast cells (Saccharomyces cerevisiae) to extremely high frequency electromagnetic fields around 41.7 GHz at very low power levels to see if the radiation affected how quickly the cells divided. After careful testing with proper controls, they found no significant differences in cell division rates between exposed and unexposed yeast. This contradicts some earlier studies that claimed to find biological effects from similar EMF exposures.
Cain CD, Thomas DL, Adey WR · 1997
Researchers exposed mouse cells to cell phone-like radiation (836.55 MHz TDMA signals) for 28 days to see if it would enhance cancer cell formation when combined with a known tumor-promoting chemical. The radiation exposure at levels similar to cell phone use did not increase cancer cell formation compared to unexposed cells. This suggests that this type of radiofrequency exposure does not act as a tumor promoter in laboratory cell cultures.
Antonopoulos A, Eisenbrandt H, Obe G, · 1997
Researchers exposed human immune cells (lymphocytes) to electromagnetic fields at frequencies used by cell phones and other wireless devices (380, 900, and 1800 MHz) to see if the radiation would damage the cells' DNA or disrupt their normal growth cycle. The study found no measurable differences between cells exposed to EMF and unexposed control cells. This suggests that these specific frequencies, under the conditions tested, did not cause detectable genetic damage or cellular disruption in immune cells.
Malyapa RS et al. · 1997
Researchers exposed two types of cells (mouse and human) to cell phone radiation at frequencies used by mobile phones (835-847 MHz) for up to 24 hours to see if it caused DNA damage. They found no DNA damage in either cell type when exposed at a specific absorption rate (SAR) of 0.6 W/kg, which is below current regulatory limits. This suggests that cell phone radiation at this level may not directly break DNA strands in laboratory conditions.
Malyapa RS et al. · 1997
Researchers exposed lab-grown cells to microwave radiation at 2450 MHz (the same frequency used in microwave ovens and older WiFi) for up to 24 hours to see if it would damage DNA. Using a highly sensitive test called the comet assay, they found no DNA damage at either exposure level tested. This contradicted earlier studies that suggested microwave radiation could break DNA strands in brain cells.
Persson BRR, Salford LG, Brun A · 1997
Researchers exposed rats to 915 MHz microwave radiation (similar to cell phone frequencies) for periods ranging from 2 minutes to 16 hours and examined whether this damaged the blood-brain barrier, a critical protective shield that prevents toxins from entering brain tissue. They found that 39% of exposed rats showed abnormal leakage in their blood-brain barrier compared to only 17% of unexposed control rats. This suggests that wireless communication frequencies can compromise the brain's natural protective barrier, potentially allowing harmful substances to reach brain cells.
Olchowik G · 1997
Researchers exposed rats to both hydrocortisone (a steroid that weakens bones) and microwave radiation for 12 weeks to see how the combination affected bone density. Surprisingly, they found that microwave radiation appeared to protect bone tissue from the bone-weakening effects of the steroid treatment. This unexpected finding suggests microwave exposure might have some protective effects on bones under certain conditions.
Maes A, Collier M, Van Gorp U, Vandoninck S, Verschaeve L · 1997
Researchers exposed human blood cells to 935.2 MHz microwaves (the same frequency used by GSM cell phones) to test whether this radiation could damage DNA or chromosomes. They found no direct genetic damage from the microwaves alone, but discovered a very weak increase in DNA damage when cells were exposed to both microwaves and a known cancer-causing chemical called mitomycin C.
Koldayev VM, Shchepin YV, · 1997
Researchers exposed sea urchin embryos to electromagnetic radiation and found it reduced successful fertilization rates while increasing abnormal development. The study revealed that EMR damaged cell membranes, increased harmful oxidation, and disrupted normal cellular processes during early embryonic development. This demonstrates that electromagnetic fields can interfere with fundamental reproductive processes at the cellular level.
Chattopadhyay SK, Toews KA, Butt S, Barlett R, Brown HD · 1997
Researchers studied how microwave electromagnetic fields affect enzyme activity using a laboratory model that better mimics conditions inside living cells than traditional test tube experiments. They found that low-intensity microwave fields disrupted the function of two important enzymes (acetylcholinesterase and cytochrome-P450 reductase) in both traditional solutions and the more realistic cellular-like environment. This suggests that EMF effects on enzymes observed in simple laboratory conditions may also occur in the complex environment of actual living cells.
Rojavin MA, Ziskin MC · 1997
Researchers exposed anesthetized mice to millimeter wave radiation at 61.22 GHz and found it extended the duration of anesthesia by approximately 50%. The effect was blocked when mice were pretreated with naloxone (an opioid blocker), suggesting the radiation triggers the release of the body's natural opioids. This demonstrates that millimeter wave exposure can directly alter brain chemistry and nervous system function.
Pu, JS, Chen, J, Yang, YH, Bai, YQ · 1997
Researchers exposed mice to 3000 MHz microwave radiation for one hour daily over seven days. They found significant reductions in brain electrical activity and decreased cellular energy production in regions controlling memory and hormones, suggesting wireless radiation disrupts brain function.
Penafiel LM, Litovitz T, Krause D, Desta A, Mullins JM · 1997
Scientists exposed mouse cells to 835 MHz microwaves and found that pulsed signals (like those from digital phones) increased a growth-related enzyme by up to 90%, while steady signals showed little effect. This suggests the signal pattern, not just power level, influences biological responses.
Mason PA et al. · 1997
Researchers exposed rats to high-power 5.02 GHz microwave radiation, heating their brains to dangerous temperatures. This thermal stress significantly increased three amino acid concentrations in critical brain regions including the hypothalamus. The findings suggest microwave heating disrupts normal brain chemistry beyond temperature-control areas.
Litovitz et al. · 1997
Researchers exposed cells to microwave radiation from cell phones and found it increased activity of an enzyme called ornithine decarboxylase, which is linked to cell growth and potentially cancer. However, when they added low-frequency electromagnetic 'noise' during the exposure, it completely blocked these cellular effects. This suggests that certain types of electromagnetic interference might actually protect cells from microwave damage.
Donnellan M, McKenzie DR, French PW. · 1997
Researchers exposed immune cells called mast cells to cell phone radiation at 835 MHz for 20 minutes, three times daily for a week. They found that starting on day four, the cells began growing faster, changed shape, and became more reactive to chemical triggers. What's particularly concerning is that these changes persisted for at least a week after the radiation exposure ended, suggesting the effects may be long-lasting.
Gapeev AB, Lakushina VS, Chemeris NK, Fesenko EE · 1997
Russian researchers exposed mouse immune cells to extremely high frequency radiation (42 GHz) at low power for 20 minutes. Depending on how the radiation was pulsed, it either boosted or suppressed the cells' infection-fighting ability by 25%, showing weak electromagnetic fields can significantly alter immune function.
Fritze K et al. · 1997
Scientists exposed rats to cell phone radiation for 24 hours at different power levels. Only the highest exposure caused temporary stress protein increases in brain cells, with effects disappearing within a day. This suggests brief cellular stress occurs at extreme levels but causes no lasting brain damage.
French PW, Donnellan M, McKenzie DR, · 1997
Researchers exposed human brain tumor cells (astrocytoma) to 835 MHz radiation-similar to early cell phone frequencies-for 20 minutes three times daily over a week. They found that lower power levels actually caused more biological effects than higher power levels, including reduced DNA synthesis and dramatic changes in cell shape. This counterintuitive finding suggests that weaker EMF signals may disrupt cellular communication pathways in ways that stronger signals do not.
Donnellan M, McKenzie DR, French PW · 1997
Researchers exposed immune cells called mast cells to 835 MHz radiofrequency radiation (similar to cell phone frequencies) for 20 minutes three times daily over a week. The exposed cells showed increased DNA synthesis, altered cell shape, and enhanced release of inflammatory substances compared to unexposed cells. These cellular changes persisted for at least a week after the radiation exposure ended, suggesting the effects may trigger lasting biological responses.