3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Exposure Types

Magnetic Fields (ELF)

Share:

Extremely Low Frequency (ELF) magnetic fields are produced by the flow of electrical current. They are measured in milligauss (mG) or microtesla (µT). Unlike electric fields, magnetic fields easily penetrate walls and most materials.

Concern Level Thresholds

Based on Building Biology Institute guidelines (mG (milligauss)):

No Concern
< 0.2 mG
Slight Concern
0.2 – 1 mG
Severe Concern
1 – 5 mG
Extreme Concern
> 5 mG

See where common exposures fall on the scale:

Your RF Exposure in ContextA logarithmic scale showing your reading relative to Building Biology concern thresholds and FCC regulatory limits.Your RF Exposure in ContextNo ConcernSlightSevereExtreme0.215FCC Limit 0.0110,000 mG

Showing 443 studies with measured magnetic fields (elf) exposure

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice.

Cuccurazzu B et al. · 2010

Italian researchers exposed mice to 50 Hz electromagnetic fields (European power line frequency) for up to seven hours daily over one week. This significantly increased new brain cell growth in the hippocampus, improving long-term memory formation and suggesting potential therapeutic applications for brain regenerative medicine.

Effects of various extremely low frequency magnetic fields on the free radical processes, natural antioxidant system and respiratory burst system activities in the heart and liver tissues.

Canseven AG, Coskun S, Seyhan N · 2008

Researchers exposed guinea pigs to household power line magnetic fields (50 Hz) for several hours daily over five days. The magnetic field exposure disrupted cellular protective systems and increased damage markers in heart and liver tissues, suggesting everyday power frequency fields may harm vital organs.

Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity.

Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. · 2008

Researchers exposed neural stem cells from newborn mice to extremely low frequency electromagnetic fields (50 Hz at 1 mT) and found that this exposure significantly promoted the development of these cells into mature neurons. The electromagnetic fields worked by increasing the activity of specific calcium channels in the cells, which are crucial for brain cell development. This suggests that power-frequency EMF exposure can directly influence how brain cells develop and mature.

Extremely low-frequency magnetic fields effects on the snail single neurons.

Partsvania B, Sulaberidze T, Modebadze Z, Shoshiashvili L. · 2008

Researchers exposed isolated snail brain cells to extremely low-frequency magnetic fields at the same frequencies used in cell phones (8.34 and 217 Hz) and measured how the neurons responded to electrical signals. They found that EMF exposure disrupted the normal learning process in these nerve cells, causing them to lose their ability to filter out repeated stimuli. This suggests that EMF exposure can interfere with basic neural functions that are fundamental to learning and memory.

Effects of long-term exposure of extremely low frequency magnetic field on oxidative/nitrosative stress in rat liver.

Erdal N, Gürgül S, Tamer L, Ayaz L · 2008

Researchers exposed rats to 50Hz magnetic fields (the same frequency as power lines) for 4 hours daily over 45 days to study liver damage. They found that female rats showed increased oxidative stress markers in their liver tissue, indicating cellular damage to proteins. This suggests that long-term exposure to power frequency magnetic fields may harm liver function, particularly in females.

Effects of exposure to 50 Hz magnetic field of 1 mT on the performance of detour learning task by chicks.

Che Y, Sun H, Cui Y, Zhou D, Ma Y. · 2007

Researchers exposed young chicks to magnetic fields from power lines for 20 hours daily and tested their learning ability. Chicks with prolonged exposure showed significantly impaired learning and memory compared to unexposed chicks, suggesting extended magnetic field exposure may interfere with brain development.

Effects of exposure to 50 Hz magnetic field of 1 mT on the performance of detour learning task by chicks

Che Y, Sun H, Cui Y, Zhou D, Ma Y. · 2007

Researchers exposed young chickens to power line magnetic fields for either 20 hours or 50 minutes daily, then tested their learning ability. Chicks with prolonged exposure showed significant learning problems, while brief exposure caused no harm, suggesting extended magnetic field exposure may impair brain function.

Effect of 50-Hz 1-mT magnetic field on the uterus and ovaries of rats (electron microscopy evaluation).

Aksen F, Akdag MZ, Ketani A, Yokus B, Kaya A, Dasdag S. · 2006

Scientists exposed female rats to 50-Hz magnetic fields (household electrical frequency) for 50-100 days. The study found significant cellular damage in ovaries and uterus, including broken cell structures and increased oxidative stress. This suggests prolonged exposure to common electrical frequencies may harm female reproductive organs.

Immune System108 citations

Alteration in cellular functions in mouse macrophages after exposure to 50 Hz magnetic fields.

Frahm J, Lantow M, Lupke M, Weiss DG, Simkó M · 2006

Scientists exposed mouse immune cells to 50 Hz magnetic fields from power lines and found the cells became hyperactive. The fields increased the cells' ability to consume particles by 60% and boosted inflammatory chemicals 12-fold, suggesting everyday electrical frequencies can overstimulate immune responses.

Modulation of MCP-1 and iNOS by 50-Hz sinusoidal electromagnetic field

Reale M et al. · 2006

Researchers exposed human immune cells called monocytes to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla overnight. They found the fields altered production of two important immune signaling molecules: reducing nitric oxide synthase (which helps fight infections) while increasing MCP-1 (which attracts immune cells to sites of inflammation). These changes suggest power-frequency magnetic fields can disrupt normal immune system function.

Cell activating capacity of 50 Hz magnetic fields to release reactive oxygen intermediates in human umbilical cord blood-derived monocytes and in Mono Mac 6 cells.

Lupke M, Rollwitz J, Simkó M. · 2004

German researchers exposed human immune cells (monocytes) to 50 Hz magnetic fields for 45 minutes and measured their production of reactive oxygen species (ROS), which are damaging molecules that contribute to cellular stress and disease. They found that magnetic field exposure increased ROS production by 20-50% in these immune cells. This matters because elevated ROS levels are linked to inflammation, aging, and various health problems.

Exposure to AC and DC magnetic fields induces changes in 5-HT1B receptor binding parameters in rat brain membranes.

Espinosa JM, Liberti M, Lagroye I, Veyret B. · 2006

Scientists exposed rat brain tissue to magnetic fields from power lines and found significant changes in serotonin receptors that control mood and sleep. One hour of exposure at levels found near electrical equipment altered brain chemistry, demonstrating that common magnetic field exposure can directly affect how brain cells function.

Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white Leghorn chicken embryos.

Lahijani MS, Bigdeli MR, Kalantary S. · 2011

Researchers exposed chicken embryos to magnetic fields similar to power lines before incubation and studied their brain development for 14 days. The exposed embryos showed significant brain damage including increased cell death and tissue breakdown compared to unexposed controls. This suggests that magnetic field exposure during critical development periods can harm the developing nervous system.

Effects of sinusoidal electromagnetic fields on histopathology and structures of brains of preincubated white leghorn chicken embryos

Lahijani MS, Bigdeli MR, Kalantary S. · 2011

Researchers exposed chicken eggs to 50 Hz electromagnetic fields (like those from power lines) for 24 hours before incubation, then examined the developing embryos' brains after 14 days. The exposed embryos showed significant brain damage, including increased cell death (apoptosis) and tissue degeneration. This study demonstrates that even brief pre-development exposure to common electromagnetic frequencies can cause measurable harm to the developing nervous system.

Biophoton emission of MDCK cell with hydrogen peroxide and 60 Hz AC magnetic field.

Cheun BS, Yi SH, Baik KY, Lim JK, Yoo JS, Shin HW, Soh KS · 2007

Researchers exposed canine kidney cells to a 60 Hz magnetic field (the same frequency as household electricity) while measuring their light emission when stressed by hydrogen peroxide. The magnetic field altered how cells responded to oxidative stress, changing the pattern of light they emitted. This suggests that power frequency magnetic fields can influence cellular stress responses at the biochemical level.

Oxidative stress and apoptosis in relation to exposure to magnetic field

Emre M, Cetiner S, Zencir S, Unlukurt I, Kahraman I, Topcu Z · 2011

Researchers exposed rats to extremely low frequency magnetic fields (1-40 Hz) for one hour daily over 30 days and measured liver damage markers in blood and cell death in tissues. They found increased oxidative stress indicators and changes in cell death patterns, suggesting that even low-level magnetic field exposure can trigger biological stress responses. This matters because these frequency ranges are common around power lines and household electrical systems.

Effects of a 60 Hz Magnetic Field Exposure Up to 3000 μT on Human Brain Activation as Measured by Functional Magnetic Resonance Imaging.

Legros A, Modolo J, Brown S, Roberston J, Thomas AW. · 2015

Researchers scanned people's brains after one-hour exposure to 60 Hz magnetic fields from power lines. Brain scans showed altered activation patterns during tasks, even though performance stayed normal. This suggests magnetic field exposure can change how the brain functions, with effects lasting after exposure ends.