Salunke BP, Umathe SN, Chavan JG. · 2014
Researchers exposed mice to 50 Hz magnetic fields (the same frequency as household electricity) for up to 120 days and measured anxiety-like behaviors. The magnetic field exposure significantly increased anxiety in the animals, and the researchers identified that this effect occurred through changes in NMDA receptors in the brain. The study provides biological evidence that long-term exposure to extremely low frequency magnetic fields can alter brain chemistry and behavior.
Salunke BP, Umathe SN, Chavan JG · 2014
Researchers exposed mice to 50 Hz magnetic fields (power line frequency) for 8 hours daily and found it caused obsessive-compulsive behaviors. The exposure increased nitric oxide in brain regions controlling behavior, suggesting this chemical pathway explains how magnetic fields can affect mental health.
Giorgi G et al. · 2014
Italian researchers exposed human brain cells to power line frequency magnetic fields (50 Hz) while simultaneously stressing them with hydrogen peroxide. Over 72 hours, the magnetic field exposure did not increase DNA damage beyond what the chemical stress alone caused, suggesting power-frequency fields may not worsen cellular damage.
Reale M et al. · 2014
Researchers exposed human brain cells to 50 Hz electromagnetic fields (the type from power lines) for up to 24 hours and found the cells produced more harmful molecules called free radicals and nitric oxide. While the cells initially tried to defend themselves by boosting antioxidant activity, this protection failed when the cells faced additional stress, leading to cellular damage that could contribute to brain diseases like Alzheimer's.
Reale M et al. · 2014
Researchers exposed human brain cells to 50 Hz magnetic fields from household electricity and found they triggered harmful oxidative stress. The cells' natural defenses initially compensated, but failed when combined with other stressors, suggesting everyday EMF exposure may increase brain vulnerability to damage.
Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J. · 2014
Researchers exposed newborn rat nerve cells to 50 Hz electromagnetic fields (power line frequency) for two hours. The exposure increased production of BDNF, a protein essential for nerve growth and brain health, by triggering calcium flow into cells and activating specific cellular pathways.
Jung IS, Kim HJ, Noh R, Kim SC, Kim CW. · 2014
Researchers exposed nerve cells to 50 Hz magnetic fields (power line frequency) for five days. The magnetic fields enhanced nerve cell growth, increasing nerve extensions and proteins needed for nerve development. This suggests power line frequencies might stimulate nerve regeneration and offer insights for treating neurodegenerative diseases.
Li L, Xiong DF, Liu JW, Li ZX, Zeng GC, Li HL. · 2013
Researchers tested cognitive and brain function in 310 Chinese electrical workers regularly exposed to power line electromagnetic fields during equipment inspections, comparing them to 300 unexposed office workers. The study found no differences in memory, reaction time, or other brain performance measures between the two groups. This suggests that occupational exposure to power frequency electromagnetic fields may not impair basic cognitive abilities.
Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S · 2013
Researchers exposed human bone marrow stem cells to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla for several days. They found that this EMF exposure triggered the stem cells to transform into nerve cells by activating specific cellular pathways and generating reactive oxygen species (ROS). This suggests that power-frequency magnetic fields can directly influence how our stem cells develop and differentiate.
Patruno A et al. · 2012
Researchers exposed immune cells to 50 Hz magnetic fields (the same frequency as power lines) for 24 hours and found significant disruption of cellular repair mechanisms. The EMF exposure caused oxidative stress and altered the activity of enzymes called matrix metalloproteinases (MMPs), which help regulate tissue repair and inflammation. These changes could potentially affect how the immune system responds to threats and repairs tissue damage.
Bułdak RJ et al. · 2012
Researchers exposed mouse cancer cells to 50 Hz electromagnetic fields for 16 minutes, with and without chemotherapy drug cisplatin. The electromagnetic fields caused mild DNA damage alone but surprisingly reduced cisplatin's toxic effects when combined, showing EMF interactions depend on other environmental factors present.
Sakhnini L, Al Ali H, Al Qassab N, Al Arab E, Kamal A. · 2012
Researchers exposed pregnant mice to power line frequency electromagnetic fields for seven days, then tested their babies' motor skills. Mice exposed in the womb showed significant learning deficits compared to unexposed mice, suggesting developing brains are particularly vulnerable to EMF during pregnancy.
Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, Che Y. · 2012
Researchers exposed mice to magnetic fields from power lines and appliances, then tested their learning abilities. The exposed mice showed significant learning problems and brain cell damage in memory regions, suggesting everyday electromagnetic fields may harm brain function.
Hong MN et al. · 2012
Researchers exposed human breast cells to 60 Hz magnetic fields (the same frequency as power lines) for 4 hours to test whether this exposure causes oxidative stress, which is cellular damage from unstable molecules. The magnetic field exposure produced no measurable changes in oxidative stress markers, while radiation exposure used as a positive control did cause significant cellular damage.
Lee HJ, Jin YB, Lee JS, Choi JI, Lee JW, Myung SH, Lee YS. · 2012
Researchers exposed mouse cells to 60 Hz magnetic fields (the type from power lines) to see if this could trigger cellular transformation into cancer-like cells. They tested the magnetic field alone and combined with known cancer-causing agents like radiation. The study found no evidence that the magnetic field exposure caused cell transformation or enhanced the cancer-causing effects of other agents.
Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, Che Y. · 2012
Researchers exposed mice to extremely low frequency magnetic fields (the type emitted by power lines and electrical devices) for 4 hours daily and tested their learning abilities. The exposed mice showed significant impairments in both spatial memory and habit formation, along with increased oxidative stress (cellular damage) in key brain regions responsible for learning and memory.
Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, Che Y. · 2012
Researchers exposed mice to power line frequency magnetic fields for 4 hours daily over 12 weeks. The exposed mice showed impaired learning and memory abilities, plus brain damage from oxidative stress. This suggests household electrical fields may affect cognitive function.
Jin YB et al. · 2012
Korean researchers exposed mouse and human cells to 60 Hz magnetic fields (the same frequency used in electrical power systems) for 4 hours to see if this would cause DNA damage, either alone or when combined with known cancer-causing agents like radiation. They found no DNA damage from the magnetic field exposure, even when combined with other harmful substances that normally cause genetic damage.
Calabrò E, Condello S, Magazù S, Ientile, R. · 2011
Italian researchers exposed human brain cells to 50 Hz magnetic fields (like power lines) for three hours and found cellular damage including membrane changes, potential DNA harm, and protein breakdown indicating cell death, providing evidence that power-frequency fields can damage neural cells.
Patruno A et al. · 2011
Researchers exposed human skin and immune cells to 50 Hz electromagnetic fields for 25 hours. The EMFs altered three key enzymes that protect cells from damage and control inflammation. These findings reveal new ways EMFs interact with cellular repair systems, potentially affecting wound healing and neurodegenerative diseases.
Masuda H et al. · 2011
Researchers exposed rat brain tissue and human cells to 50-Hz magnetic fields at 1 milliTesla (similar to levels near power lines) to see if this affected serotonin receptors, which are important for brain function and mood. They found no changes in how serotonin bound to these receptors or in the cellular responses that follow. This suggests that magnetic field exposure at this level doesn't interfere with this particular brain signaling pathway.
Cuccurazzu B et al. · 2010
Researchers exposed mice to 50 Hz electromagnetic fields (power line frequency) for up to seven hours daily over one week. The exposure significantly increased new brain cell growth in the hippocampus, the brain region responsible for memory formation, suggesting certain EMF exposures may enhance rather than harm brain function.
Frahm J, Mattsson MO, Simkó M. · 2010
Researchers exposed mouse immune cells to 50 Hz magnetic fields and found the exposure triggered cellular stress responses and increased harmful molecules called reactive oxygen species. This suggests magnetic fields can activate immune cells and disrupt normal cellular processes even without killing cells.
Garip AI, Akan Z. · 2010
Scientists exposed human blood cancer cells to electromagnetic fields from power lines for three hours. The fields protected healthy cells from dying but increased cell death in already-stressed cells. This shows that EMF effects depend on the cell's existing health condition.
Akan Z, Aksu B, Tulunay A, Bilsel S, Inhan-Garip A · 2010
Researchers exposed immune cells to 50 Hz magnetic fields (power line frequency) while they fought bacterial infections. The magnetic field exposure boosted the cells' bacteria-fighting ability by increasing nitric oxide production and protective proteins. This suggests some EMF exposures might enhance rather than harm immune function.