Amirifalah Z, Firoozabadi SM, Shafiei SA. · 2013
Researchers exposed 10 women to weak magnetic fields targeting brain regions for 9 minutes. The exposure reduced specific brainwave activity by 12-27% after treatment ended. This suggests targeted magnetic fields could potentially help treat conditions like anxiety by calming overactive brain areas.
Calderón C et al. · 2013
Researchers tested 47 cell phones and found they emit extremely low frequency magnetic fields averaging 221 nanoteslas during typical use. Phone manufacturer and design created a two-fold difference in exposure levels, suggesting mobile phones contribute substantially to magnetic field exposure.
Kumar S et al. · 2013
Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power line frequencies) for 2 hours daily over 8 weeks. The magnetic field exposure restored normal pain responses and corrected abnormal brain chemical levels that had developed after the spinal injury. This suggests that specific EMF exposures might have therapeutic potential for certain neurological conditions.
Kumar S et al. · 2013
Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power lines) for 2 hours daily over 8 weeks. They found that this exposure helped restore normal pain responses and brain chemistry that had been disrupted by the spinal injuries. The magnetic field treatment appeared to normalize levels of key brain chemicals like serotonin and GABA that control pain perception.
Wang X et al. · 2013
Researchers exposed young adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice when tested in maze tasks. This unexpected finding suggests that magnetic field exposure during adolescence might enhance certain cognitive abilities, though the implications for human brain development remain unclear.
Wang X et al. · 2013
Researchers exposed adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice. This unexpected finding suggests that certain EMF exposures during development might enhance rather than harm specific brain functions, though the implications for human health remain unclear.
Celik MS et al. · 2013
Researchers exposed rats to magnetic fields from power lines while giving them manganese, a potentially toxic mineral. Magnetic field exposure significantly increased manganese buildup in the brain, kidneys, and liver, suggesting everyday electrical exposures may enhance absorption of harmful metals.
Celik MS et al. · 2013
Researchers exposed rats to power line frequency magnetic fields while giving them manganese, a potentially toxic metal. The magnetic field exposure significantly increased manganese buildup in the brain, kidneys, and liver, suggesting EMF exposure may impair the body's ability to eliminate toxic substances.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (120 Hz at 0.66 mT) and found that these fields increased blood vessel permeability in specific brain regions called circumventricular organs. The magnetic field exposure caused blood vessels to dilate and become more permeable to substances that normally can't cross into brain tissue. This suggests that ELF magnetic fields can compromise the brain's protective blood barrier system.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to 120 Hz magnetic fields and found the fields made brain blood vessels leaky and dilated. This suggests EMF exposure might weaken the blood-brain barrier, which normally protects the brain from harmful substances in the bloodstream.
Esmekaya MA et al. · 2013
Scientists exposed E. coli bacteria to power line frequency magnetic fields for 24 hours. While the bacteria survived and reproduced normally, the electromagnetic exposure damaged their cell surfaces, creating holes and destroying outer membranes. This shows EMF can cause cellular damage even when organisms appear healthy.
Esmekaya MA et al. · 2013
Scientists exposed E. coli bacteria to 50 Hz magnetic fields for 24 hours. While the bacteria survived normally, the magnetic field exposure damaged their cell surfaces, creating holes and destroying membranes. This shows EMF can harm cells even when they appear healthy overall.
El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013
Researchers exposed rats to magnetic fields from power lines for 15 days and monitored brain activity. The magnetic fields altered brainwave patterns, particularly in the brain's right side. Caffeine appeared to modify these effects, suggesting everyday exposures may interact in unexpected ways.
El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (the type emitted by power lines and appliances) for 15 days and found these fields significantly altered brain wave patterns, particularly enhancing activity in the right hemisphere. When caffeine was given alongside the magnetic field exposure, it appeared to partially counteract some of the brain changes, especially in areas controlling movement.
Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. · 2013
Chinese researchers exposed stem cells from rat bone marrow to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily over 12 days. The electromagnetic field exposure helped these stem cells transform into functional brain neurons that could form connections and transmit electrical signals. This suggests that power-frequency magnetic fields might have therapeutic potential for treating nervous system diseases through stem cell therapy.
Balassa T et al. · 2013
Researchers exposed pregnant and newborn rats to 50 Hz magnetic fields (household electricity frequency) during brain development. The exposure altered how brain cells communicate, increasing electrical activity but impairing the brain's ability to form new memories and connections during critical developmental periods.
Calabrò E et al. · 2013
Researchers exposed brain cells to 50 Hz magnetic fields (household electricity frequency) at different strengths. Higher exposures damaged cell membrane proteins and reduced energy production in mitochondria, leading to decreased cell survival and suggesting power-frequency fields harm basic cellular functions.
Deng Y, Zhang Y, Jia S, Liu J, Liu Y, Xu W, Liu L. · 2013
Researchers exposed mice to power line frequency magnetic fields for 8 weeks and found significant brain damage including memory loss, brain cell death, and cellular stress markers. While exposure levels exceeded typical household amounts, the study demonstrates these electromagnetic fields can directly harm brain tissue.
Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G, Sun X. · 2013
Researchers exposed mice to 50 Hz magnetic fields (8 mT) for 28 days and found significant damage to learning and memory abilities, plus harmful oxidative stress in brain tissue. When mice were also given lotus seedpod extract, these negative effects were largely prevented. This suggests that extremely low frequency electromagnetic fields can damage brain function through oxidative stress mechanisms.
Manjhi J, Kumar S, Behari J, Mathur R. · 2013
Researchers studied whether extremely low frequency magnetic fields could prevent bone loss in rats with spinal cord injuries. They exposed injured rats to 50 Hz magnetic fields (17.96 microTesla) for 2 hours daily over 8 weeks and found the treatment significantly prevented osteoporosis, maintaining bone density and mineral content compared to untreated injured rats. This suggests that specific magnetic field therapy might help preserve bone health after spinal cord injury.
Xiong J, He C, Li C, Tan G, Li J, Yu Z, Hu Z, Chen F. · 2013
Researchers exposed rats to power line-frequency magnetic fields for 14-28 days and found significant damage to brain cell connections in the entorhinal cortex, a memory center. The exposure destroyed dendritic spines that enable brain cells to communicate, potentially explaining EMF-related cognitive problems.
Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S · 2013
Researchers exposed human bone marrow stem cells to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla for several days. They found that this EMF exposure triggered the stem cells to transform into nerve cells by activating specific cellular pathways and generating reactive oxygen species (ROS). This suggests that power-frequency magnetic fields can directly influence how our stem cells develop and differentiate.
Balassa T et al. · 2013
Researchers exposed developing rats to 50 Hz magnetic fields (the same frequency as power lines) during critical brain development periods and found lasting changes in brain function. The exposed animals showed altered electrical activity in brain regions responsible for learning and memory, with some changes persisting weeks after exposure ended. This suggests that magnetic field exposure during early development may affect how the brain processes information later in life.
Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G, Sun X. · 2013
Researchers exposed mice to 50 Hz magnetic fields (the type from power lines) for 28 days and found it damaged their learning, memory, and brain cells through oxidative stress. When mice were given lotus seedpod antioxidants during exposure, these harmful effects were largely prevented. This suggests that extremely low frequency EMF exposure can cause measurable brain damage, but antioxidants may offer some protection.
Xiong J, He C, Li C, Tan G, Li J, Yu Z, Hu Z, Chen F. · 2013
Researchers exposed rats to magnetic fields from power lines for up to 28 days and found significant damage to brain cell connections in areas controlling memory and navigation. These structural changes to nerve cells could explain cognitive problems linked to EMF exposure.