3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Nursery EMF Research

RFELF MagneticELF Electric

Research on EMF sources in baby nurseries - baby monitors, night lights, and sound machines.

3
Sources
909
Studies
3
EMF Types

Related Studies (851)

Alterations of human electroencephalographic activity caused by multiple extremely low frequency magnetic field exposures.

Cvetkovic D, Cosic I. · 2009

Researchers exposed 33 people to extremely low frequency magnetic fields (ranging from 4 to 50 Hz) and measured their brain waves using EEG. They found that specific magnetic field frequencies could alter brain wave patterns in corresponding frequency bands - for example, 10 Hz magnetic fields changed alpha brain waves (8-12 Hz). The changes depended on timing and sequence of exposure, suggesting these fields can influence brain activity in predictable ways.

Brain & Nervous SystemNo Effects Found

Effects of W-CDMA 1950 MHz EMF emitted by mobile phones on regional cerebral blood flow in humans

Mizuno Y et al. · 2009

Japanese researchers used brain scans to study whether 30 minutes of exposure to 3G mobile phone radiation (W-CDMA at 1950 MHz) affects blood flow in the brain. Testing nine healthy men with PET scans before, during, and after phone exposure, they found no significant changes in regional brain blood flow compared to fake exposure. This suggests that 3G phone radiation at typical usage levels doesn't measurably alter blood circulation in the brain.

Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain.

Janać B, Tovilović G, Tomić M, Prolić Z, Radenović L. · 2009

Serbian researchers exposed rats to power line frequency magnetic fields (50 Hz) for up to seven days. The exposure significantly altered serotonin brain receptors that control mood and behavior, with effects becoming stronger over longer exposure periods. This suggests household electrical fields may impact brain chemistry.

Oxidative StressNo Effects Found

Protein oxidation under extremely low frequency electric field in guinea pigs. Effect of N-acetyl-L-cysteine treatment.

Güler G, Türközer Z, Ozgur E, Tomruk A, Seyhan N, Karasu C · 2009

Researchers exposed guinea pigs to power line frequency electric fields (12 kV/m for 8 hours daily over 7 days) to study protein damage and whether the antioxidant N-acetyl-L-cysteine could protect against it. The study found no significant protein damage from the electric field exposure alone, though it did reduce a protein synthesis marker in the liver. The antioxidant treatment showed some effects on protein markers, suggesting it may have biological activity in this context.

Reactive oxygen species formation is not enhanced by exposure to UMTS 1950 MHz radiation and co-exposure to ferrous ions in Jurkat cells.

Brescia F et al. · 2009

Researchers exposed human immune cells to 3G cell phone radiation at levels similar to what phones emit, testing whether this radiation creates harmful reactive oxygen species (unstable molecules that can damage cells). Even after 24 hours of exposure, the radiation produced no increase in these damaging molecules and didn't harm cell survival. The study also tested whether radiation might amplify damage from iron compounds, but found no such interaction.

Oxidative StressNo Effects Found

Reactive oxygen species formation is not enhanced by exposure to UMTS 1950 MHz radiation and co-exposure to ferrous ions in Jurkat cells

Brescia F et al. · 2009

Researchers exposed human immune cells to 1950 MHz cell phone radiation (the frequency used by 3G networks) to see if it would trigger oxidative stress, a cellular damage process linked to aging and disease. They tested various exposure durations and power levels, both alone and combined with iron compounds known to cause oxidative stress. The study found no increase in harmful reactive oxygen species or cell death from the radiation exposure under any conditions tested.

Thermal effects of mobile phones on facial nerves and surrounding soft tissue.

Acar GO, Yener HM, Savrun FK, Kalkan T, Bayrak I, Enver O. · 2009

Researchers exposed rabbits to cell phone radiation (1900 MHz) for 25 minutes and measured temperature changes and nerve function in facial tissues. They found that the radiation increased tissue temperature by 0.39°C and temporarily impaired facial nerve function, with both effects returning to normal 25 minutes after exposure ended.

Brain & Nervous SystemNo Effects Found

Effects of 50 Hz electromagnetic fields on rat cortical synaptosomes

Aldinucci C et al. · 2009

Italian researchers exposed rat brain nerve terminals (synaptosomes) to 50 Hz magnetic fields at 2 milliTesla for 2 hours to study effects on basic cellular functions. They found no changes in energy production, calcium levels, membrane function, or oxidative stress markers. This suggests that power-frequency magnetic fields at this intensity don't disrupt fundamental brain cell processes.

The influence of low-frequency magnetic field on plasma antioxidant capacity and heart rate.

Ciejka EB, Goraca A · 2009

Researchers exposed rats to 40 Hz magnetic fields (7 mT strength) for different durations and measured heart rate and antioxidant levels in blood. They found that 14 days of exposure slowed heart rate and changed the body's antioxidant defenses, with effects varying based on daily exposure time (30 vs 60 minutes). The study shows that magnetic field exposure duration affects cardiovascular function and cellular protection systems.

Effects of ELF-EMF on brain proteins in mice.

Strasák L, Bártová E, Krejci J, Fojt L, Vetterl V. · 2009

Researchers exposed mice to 50 Hz magnetic fields (the same frequency as electrical power lines) for 4 days and measured changes in brain proteins. They found that exposure significantly decreased levels of c-Jun, a protein crucial for brain cell communication and development. This suggests that even short-term exposure to power-frequency magnetic fields can alter important brain proteins.

Effects of ELF-EMF on brain proteins in mice.

Strasák L, Bártová E, Krejci J, Fojt L, Vetterl V. · 2009

Researchers exposed laboratory mice to extremely low frequency magnetic fields (50 Hz at 2 milliTesla) for four days and measured changes in brain proteins. They found that exposure decreased levels of c-Jun, a protein involved in cellular stress responses and gene regulation, while another protein (c-Fos) remained unchanged. This suggests that even short-term exposure to magnetic fields can alter brain biochemistry at the cellular level.

Cellular EffectsNo Effects Found

Effects of exposure to DAMPS and GSM signals on ornithine decarboxylase (ODC) activity: I. L-929 mouse fibroblasts.

Billaudel B, Taxile M, Ruffie G, Veyret B, Lagroye I. · 2009

Researchers exposed mouse cells to cell phone signals (DAMPS and GSM) for one hour to see if it would increase activity of ornithine decarboxylase (ODC), an enzyme linked to cell growth and potentially cancer development. They found no significant changes in ODC activity at exposure levels of 2.5 and 6 W/kg, contradicting some earlier studies that reported increased enzyme activity. This suggests that under controlled temperature conditions, these specific cell phone signals may not trigger this particular cellular response.

Cellular EffectsNo Effects Found

Effects of exposure to DAMPS and GSM signals on Ornithine Decarboxylase (ODC) activity: II. SH-SY5Y human neuroblastoma cells.

Billaudel B et al. · 2009

Researchers exposed human brain tumor cells to cell phone radiation similar to DAMPS and GSM signals for up to 24 hours, then measured changes in an enzyme called ornithine decarboxylase (ODC) that's involved in cell growth. They found no changes in ODC activity regardless of the type of signal, exposure duration, or radiation intensity. This suggests that typical cell phone radiation levels don't affect this particular cellular process in brain cells.

DNA & Genetic DamageNo Effects Found

Cytogenetic effects of exposure to 2.3 GHz radiofrequency radiation on human lymphocytes in vitro.

Hansteen IL et al. · 2009

Norwegian researchers exposed human immune cells (lymphocytes) to 2.3 GHz radiofrequency radiation - similar to what cell phones emit - for an entire cell cycle to see if it would damage DNA or chromosomes. They found no statistically significant genetic damage compared to unexposed cells, even when they added a known DNA-damaging chemical to make cells more vulnerable. This suggests that RF radiation at levels used by mobile devices may not directly break chromosomes in immune cells under these laboratory conditions.

Effect of short-term 50 Hz electromagnetic field exposure on the behavior of rats.

Balassa T, Szemerszky R, Bárdos G. · 2009

Researchers exposed rats to 50 Hz magnetic fields at 500 microtesla (the workplace safety limit) for 20 minutes and found the animals became more passive and anxious in behavioral tests. The magnetic field exposure increased situational anxiety and reduced activity levels, though it didn't affect social behaviors. This suggests that even brief exposure to magnetic fields at legally permitted levels can alter brain function and behavior.

Effect of continuous exposure to alternating magnetic field (50 Hz, 0.5 mT) on serotonin and dopamine receptors activity in rat brain.

Janać B, Tovilović G, Tomić M, Prolić Z, Radenović L. · 2009

Researchers exposed rats to extremely low frequency magnetic fields (the same type produced by power lines and household appliances) for up to 7 days and measured changes in brain chemistry. They found that these magnetic fields altered serotonin receptors in the brain's prefrontal cortex, with effects becoming more pronounced after longer exposure periods. This matters because serotonin plays a crucial role in mood, sleep, and behavior regulation.

Brain & Nervous SystemNo Effects Found

Effects of UMTS cellular phones on human hearing: results of the European project EMFnEAR

Parazzini M et al. · 2009

Researchers exposed 134 healthy young adults to 20 minutes of radiofrequency radiation from UMTS mobile phones at maximum power while testing their hearing function before and after exposure. The study found no consistent changes in hearing ability, ear function, or auditory processing after the RF exposure. This suggests that short-term exposure to cell phone radiation at typical usage levels does not cause immediate measurable damage to human hearing.

Oxidative StressNo Effects Found

Antioxidants alleviate electric field-induced effects on lung tissue based on assays of heme oxygenase-1, protein carbonyl content, malondialdehyde, nitric oxide, and hydroxyproline.

Güler G, Türközer Z, Ozgur E, Seyhan N. · 2009

Researchers exposed lung tissue to extremely strong electric fields (12,000 volts per meter) for 8 hours daily over 7 days to test whether antioxidants could prevent damage. They found only minor increases in one marker of cellular damage (protein carbonyl), while other damage indicators remained unchanged. The study suggests that at these exposure levels, electric fields cause minimal lung tissue damage that antioxidants may help prevent.

Immune SystemNo Effects Found

A confirmation study of Russian and Ukrainian data on effects of 2450 MHz microwave exposure on immunological processes and teratology in rats.

de Gannes FP et al. · 2009

French researchers exposed pregnant rats to 2450 MHz microwave radiation (the same frequency used in microwave ovens and WiFi) for 7 hours daily over 30 days to test whether this exposure affects immune function or causes birth defects. They found no effects on immune system markers or fetal development at the power levels tested. This study was designed to confirm earlier Russian and Ukrainian research that had suggested potential harmful effects.

Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity.

Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. · 2008

Researchers exposed neural stem cells from newborn mice to extremely low frequency electromagnetic fields (50 Hz at 1 mT) and found that this exposure significantly promoted the development of these cells into mature neurons. The electromagnetic fields worked by increasing the activity of specific calcium channels in the cells, which are crucial for brain cell development. This suggests that power-frequency EMF exposure can directly influence how brain cells develop and mature.

Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes.

Schwarz C et al. · 2008

German researchers exposed human cells to cell phone radiation (UMTS, 1,950 MHz) at levels well below safety limits to test for DNA damage. They found that skin cells (fibroblasts) showed significant genetic damage at extremely low exposure levels - as little as 0.05 W/kg, which is 40 times lower than the current safety limit. However, immune cells (lymphocytes) showed no damage, suggesting different cell types respond differently to radiofrequency radiation.

Radiofrequency electromagnetic fields (UMTS, 1,950 MHz) induce genotoxic effects in vitro in human fibroblasts but not in lymphocytes.

Schwarz C et al. · 2008

Researchers exposed human cells to 3G mobile phone radiation (UMTS at 1,950 MHz) at levels well below safety limits to test for DNA damage. They found that certain cells called fibroblasts showed significant genetic damage after exposure, while immune cells called lymphocytes were unaffected. This suggests that 3G radiation can cause DNA damage in some human cell types even at supposedly safe exposure levels.

Proportion-corrected scaled voxel models for Japanese children and their application to the numerical dosimetry of specific absorption rate for frequencies from 30 MHz to 3 GHz

Nagaoka T, Kunieda E, Watanabe S · 2008

Japanese scientists created computer models of children's bodies to study how radiofrequency radiation from cell phones and WiFi affects kids differently than adults. They found children's smaller size and body proportions change how much electromagnetic energy they absorb, highlighting potential increased vulnerability.

FAQs: EMF in Nursery

The nursery environment contains several common sources of electromagnetic field exposure including baby monitors, electrical wiring, wifi routers. Together, these 3 sources account for 909 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 909 peer-reviewed studies in our database examining EMF sources commonly found in nursery environments. These studies cover 3 different EMF sources: Baby Monitors (196 studies), Electrical Wiring (411 studies), WiFi Routers (302 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Electrical Wiring has the most research with 411 studies, followed by WiFi Routers (302) and Baby Monitors (196). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in nursery settings.