3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

Confirmation studies of Soviet research on immunological effects of microwaves: Russian immunology results.

Grigoriev YG et al. · 2010

Russian researchers exposed rats to microwave radiation at levels similar to what cell phones emit (2450 MHz frequency) for 7 hours daily over 30 days. They found the radiation triggered immune system changes in brain tissue, causing the body to produce antibodies against its own brain cells. This suggests that even low-level microwave exposure may cause autoimmune reactions where the immune system mistakenly attacks healthy tissue.

Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: A light, electron microscopy and immunohistochemical study.

Eşmekaya MA, Seyhan N, Omeroğlu S. · 2010

Turkish researchers exposed rats to cell phone-like radiation (900 MHz) for 20 minutes daily over three weeks and found significant damage to thyroid glands. The radiation caused thyroid shrinkage, reduced hormone production, and triggered cell death through a process called apoptosis. This suggests that regular exposure to mobile phone radiation could potentially disrupt thyroid function, which controls metabolism and many other vital body processes.

Reactive oxygen species levels and DNA fragmentation on astrocytes in primary culture after acute exposure to low intensity microwave electromagnetic field.

Campisi A et al. · 2010

Italian researchers exposed brain support cells (astrocytes) to cell phone-frequency radiation (900MHz) at levels similar to what phones emit. After just 20 minutes of exposure to modulated signals, the cells showed increased cellular damage and DNA fragmentation, while continuous waves caused no effects. This suggests that the pulsing pattern of wireless signals, not just their intensity, may be what causes biological harm.

Effect of chronic exposure to a GSM-like signal (mobile phone) on survival of female Sprague-Dawley rats: Modulatory effects by month of birth and possibly stage of the solar cycle.

Bartsch H et al. · 2010

German researchers exposed female rats to cell phone radiation (900 MHz) throughout their lives. Exposed rats lived 9% shorter lives than unexposed rats - about 72-77 fewer days. The radiation levels matched typical cell phone exposure, suggesting chronic use might affect human lifespan.

Effect of magnetic field on food and water intake and body weight of spinal cord injured rats.

Kumar S, Jain S, Behari J, Avelev VD, Mathur R. · 2010

Researchers exposed rats with spinal cord injuries to extremely low frequency magnetic fields (50 Hz, 17.9 microT) for 2 hours daily over 8 weeks. The magnetic field exposure restored normal food intake, water consumption, and body weight in the paralyzed rats, all of which had decreased after their spinal cord injuries. This suggests that specific magnetic field frequencies might help support basic physiological functions in spinal cord injury patients.

Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin-induced diabetic rats.

Gulturk S et al. · 2010

Scientists exposed diabetic rats to 50 Hz magnetic fields (from power lines) for three hours daily over 30 days. The magnetic fields increased blood-brain barrier permeability, allowing substances to pass more easily into brain tissue. This matters because a compromised barrier can let toxins reach the brain.

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice.

Cuccurazzu B et al. · 2010

Italian researchers exposed mice to 50 Hz electromagnetic fields (European power line frequency) for up to seven hours daily over one week. This significantly increased new brain cell growth in the hippocampus, improving long-term memory formation and suggesting potential therapeutic applications for brain regenerative medicine.

Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain.

Akdag MZ et al. · 2010

Researchers exposed rats to extremely low-frequency magnetic fields at levels matching current safety standards for 2 hours daily over 10 months. They found that these exposures significantly increased oxidative stress (cellular damage from free radicals) and weakened the brain's natural antioxidant defenses, though they didn't trigger cell death. This suggests that even magnetic field exposures within current safety limits may cause harmful biochemical changes in brain tissue over time.

Mobile phone usage and male infertility in Wistar rats.

Kesari KK, Kumar S, Behari J. · 2010

Researchers exposed male rats to mobile phone radiation for 2 hours daily over 35 days at levels similar to phone use (0.9 W/kg SAR). They found significant decreases in sperm count and protein activity, along with increased cell death in reproductive tissues. The study suggests mobile phone radiation may contribute to male fertility problems through cellular damage.

Microwave exposure affecting reproductive system in male rats.

Kesari KK, Behari J. · 2010

Researchers exposed male rats to 50 GHz microwave radiation (similar to 5G frequencies) for 2 hours daily over 45 days and examined the effects on sperm cells. The exposed rats showed significant damage to sperm quality, including increased cell death, disrupted cell division cycles, and reduced antioxidant defenses that normally protect cells from damage. These changes suggest the radiation could contribute to male fertility problems.

[Autoimmune processes after long-term low-level exposure to electromagnetic fields (the results of an experiment). Part 4. Manifestation of oxidative intracellular stress-reaction after long-term non-thermal EMF exposure of rats]

Grigor'ev IuG et al. · 2010

Researchers exposed rats to WiFi-frequency radiation (2450 MHz) for 7 hours daily over 30 days at non-heating levels. They found clear signs of oxidative stress in blood, indicating cellular damage from harmful free radicals. This suggests low-level microwave exposure can damage cells without heating tissue.

The effects of prenatal and neonatal exposure to electromagnetic fields on infant rat myocardium

Tayefi H et al. · 2010

Researchers exposed pregnant rats and their newborn pups to magnetic fields (3 mT) for 4 hours daily and examined the heart muscle tissue. They found significant damage including increased cell death, oxidative stress, and structural abnormalities in the heart muscle cells of exposed animals compared to unexposed controls. This suggests that electromagnetic field exposure during pregnancy and early development may harm heart tissue development.

Influence of low frequency magnetic field on chosen parameters of oxidative stress in rat's muscles.

Ciejka E, Skibska B, Kleniewska P, Goraca A. · 2010

Polish researchers exposed rats to 40 Hz magnetic fields (the type used in medical magnetotherapy) for either 30 or 60 minutes daily over two weeks. They found significant biochemical changes in muscle tissue, including increased sulfur compounds and altered protein levels, indicating the magnetic fields triggered oxidative stress. This suggests that even therapeutic magnetic field devices can cause measurable cellular damage in muscle tissue.

Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin-induced diabetic rats.

Gulturk S et al. · 2010

Researchers exposed diabetic rats to power line frequency magnetic fields for 30 days. The magnetic fields weakened the blood-brain barrier, which normally protects the brain from harmful substances. Diabetic animals with magnetic field exposure showed the worst barrier damage, potentially allowing toxins easier brain access.

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice

Cuccurazzu B et al. · 2010

Researchers exposed mice to 50 Hz electromagnetic fields (power line frequency) for up to seven hours daily over one week. The exposure significantly increased new brain cell growth in the hippocampus, the brain region responsible for memory formation, suggesting certain EMF exposures may enhance rather than harm brain function.

Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field

Sonmez OF, Odaci E, Bas O, Kaplan S · 2010

Researchers exposed adult female rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over 28 days. They found that exposed rats had significantly fewer Purkinje cells in their cerebellum compared to unexposed rats. Purkinje cells are critical brain neurons that control movement, balance, and coordination, making their loss potentially serious for neurological function.

The effect of mobile phone on the number of Purkinje cells: a stereological study

Rağbetli MC et al. · 2010

Researchers exposed pregnant mice to cell phone radiation at levels similar to what phones emit during calls (0.95 W/kg SAR) and examined brain development in their offspring. They found a significant decrease in Purkinje cells, which are crucial neurons in the cerebellum that control movement and coordination. This suggests that prenatal exposure to mobile phone radiation may affect normal brain development.

Browse by Health Effect