3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

5G vs 4G Radiation: What's Different?

Based on 653 peer-reviewed studies

Share:

People often ask whether 5G is more dangerous than 4G. This question requires understanding how 5G technology differs from previous generations and what research exists on each.

5G networks operate across multiple frequency bands. Low-band 5G (600-900 MHz) is actually similar to 4G frequencies. Mid-band 5G (2.5-4 GHz) overlaps with existing WiFi. High-band 5G (24-40+ GHz, "millimeter wave") represents the newest frequencies for consumer wireless exposure.

This page compares what research shows about radiation exposure from 5G versus 4G technologies.

Key Research Findings

  • 5G uses multiple frequency bands with different characteristics
  • Millimeter waves (high-band 5G) penetrate less deeply into tissue
  • More cell towers can actually reduce individual exposure levels

Related Studies (653)

Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate ZM241385.

Wang Z, Che PL, Du J, Ha B, Yarema KJ. · 2010

Researchers exposed rat brain cells to static magnetic fields and found they produced the same cellular changes as a promising Parkinson's disease drug called ZM241385. The magnetic fields altered calcium levels, energy production, and other cellular processes in ways that could potentially help treat Parkinson's disease. This suggests magnetic field therapy might offer a non-invasive treatment approach for neurological disorders.

The influence of 1800 MHz GSM-like signals on hepatic oxidative DNA and lipid damage in nonpregnant, pregnant, and newly born rabbits.

Tomruk A, Guler G, Dincel AS. · 2010

Researchers exposed pregnant and non-pregnant rabbits to cell phone-like radiation (1800 MHz GSM signals) for 15 minutes daily for a week and examined liver damage. They found increased markers of oxidative stress (cellular damage from harmful molecules) in both adult rabbits and newborns exposed to the radiation. This suggests that even brief daily exposures to cell phone frequencies can trigger biological stress responses that may accumulate over time.

Static magnetic field exposure reproduces cellular effects of the Parkinson's disease drug candidate

Wang Z, Che PL, Du J, Ha B, Yarema KJ. · 2010

Researchers exposed cells with Parkinson's disease characteristics to static magnetic fields and found the fields produced effects remarkably similar to a promising Parkinson's drug candidate called ZM241385. The magnetic fields altered calcium levels, energy production, and other cellular processes in ways that could potentially benefit Parkinson's patients. This suggests magnetic field therapy might offer a non-invasive treatment approach for neurological disorders.

Effect of radio-frequency electromagnetic radiations (RF-EMR) on passive avoidance behaviour and hippocampal morphology in Wistar rats.

Narayanan SN et al. · 2010

Researchers exposed rats to cell phone radiation by placing an active phone in their cages and making 50 missed calls daily for four weeks. The exposed rats showed impaired learning and memory behavior, taking less time to enter dangerous areas they had previously learned to avoid. Brain tissue examination revealed structural damage in the hippocampus, the brain region crucial for memory formation.

The effect of exposure duration on the biological activity of mobile telephony radiation.

Panagopoulos DJ, Margaritis LH · 2010

Researchers exposed fruit flies to cell phone radiation (GSM 900 MHz and 1800 MHz frequencies) for different durations from 1 to 21 minutes daily and measured effects on their ability to reproduce. They found that reproductive capacity decreased almost linearly with longer exposure times, meaning even short daily exposures had cumulative harmful effects. The radiation intensity used (10 microW/cm²) corresponds to holding a phone 20-30 cm away from your body.

Computational dosimetry in embryos exposed to electromagnetic plane waves over the frequency range of 10 MHz-1.5 GHz.

Kawai H, Nagaoka T, Watanabe S, Saito K, Takahashi M, Ito K. · 2010

Scientists used computer models to study how much electromagnetic radiation developing embryos absorb from radio frequencies. They found embryos absorbed up to 0.08 watts per kilogram when exposed to current safety guideline levels, helping researchers understand potential effects from everyday wireless devices.

Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling.

Gerner C et al. · 2010

Austrian researchers exposed four types of human cells to cell phone radiation (1,800 MHz) at levels similar to what phones emit during calls. After 8 hours of exposure, metabolically active cells showed significantly increased protein production, while inactive cells showed no response. The temperature rise was minimal (less than 0.15°C), indicating this was a non-thermal biological effect of the radiation itself.

Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: A light, electron microscopy and immunohistochemical study.

Eşmekaya MA, Seyhan N, Omeroğlu S. · 2010

Turkish researchers exposed rats to cell phone-like radiation (900 MHz) for 20 minutes daily over three weeks and found significant damage to thyroid glands. The radiation caused thyroid shrinkage, reduced hormone production, and triggered cell death through a process called apoptosis. This suggests that regular exposure to mobile phone radiation could potentially disrupt thyroid function, which controls metabolism and many other vital body processes.

Impact of 1.8-GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B-cell lymphoblastoid cells.

Zhijian C et al. · 2010

Researchers exposed human immune cells to cell phone radiation (1.8 GHz) combined with a chemotherapy drug (doxorubicin) to see how radiation affects DNA repair. They found that while the radiation alone didn't damage DNA, it significantly interfered with the cells' ability to repair DNA damage caused by the chemotherapy drug. This suggests that cell phone radiation may impair the body's natural DNA repair mechanisms when cells are already stressed.

Mobile phone radiation-induced free radical damage in the liver is inhibited by the antioxidants n-acetyl cysteine and epigallocatechin-gallate.

Ozgur E, Güler G, Seyhan N. · 2010

Researchers exposed guinea pigs to cell phone radiation (1800 MHz) for 10-20 minutes daily and found it caused liver damage through oxidative stress. Antioxidants like N-acetyl cysteine and green tea extract provided protection, suggesting cell phone radiation may harm organs beyond the brain.

Microwave exposure affecting reproductive system in male rats.

Kesari KK, Behari J. · 2010

Researchers exposed male rats to 50 GHz microwave radiation (similar to 5G frequencies) for 2 hours daily over 45 days and examined the effects on sperm cells. The exposed rats showed significant damage to sperm quality, including increased cell death, disrupted cell division cycles, and reduced antioxidant defenses that normally protect cells from damage. These changes suggest the radiation could contribute to male fertility problems.

Modulation of redox status and calcium handling by extremely low frequency electromagnetic fields in C2C12 muscle cells: A real-time, single-cell approach.

Morabito C et al. · 2010

Researchers exposed muscle cells to extremely low frequency electromagnetic fields (the type from power lines and household wiring) for short periods and measured cellular stress responses. The EMFs triggered increased production of harmful reactive oxygen species, disrupted the cells' energy-producing mitochondria, and altered calcium levels that control muscle function. These changes suggest that even brief EMF exposure can disrupt fundamental cellular processes in muscle tissue.

Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells.

Mannerling AC, Simkó M, Mild KH, Mattsson MO · 2010

Researchers exposed human blood cells to 50-Hz magnetic fields at household appliance levels for one hour. The exposure doubled stress protein production and increased harmful oxygen radicals by 30-40%, indicating cellular damage at magnetic field strengths commonly found near home electronics.

Pulsed electromagnetic field stimulates cellular proliferation in human intervertebral disc cells.

Lee HM et al. · 2010

Researchers exposed human spinal disc cells to 60 Hz magnetic fields at 1.8 millitesla for 72 hours to see how electromagnetic fields affect cell growth. They found that the magnetic fields stimulated DNA synthesis and increased cell proliferation without causing cell damage. This suggests that specific EMF exposures might have therapeutic potential for treating degenerative disc disease by promoting healthy cell growth.

Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain.

Maskey D et al. · 2010

Researchers exposed mice to cell phone frequency radiation (835 MHz) for up to one month and examined brain tissue in the hippocampus, a region critical for memory and learning. They found significant damage to calcium-binding proteins and near-complete loss of pyramidal brain cells in the CA1 area after one month of exposure. This cellular damage could disrupt normal brain functions including memory formation and neural connectivity.

STAT3 signalling pathway is involved in the activation of microglia induced by 2.45 GHz electromagnetic fields.

Hao Y, Yang X, Chen C, Yuan-Wang, Wang X, Li M, Yu Z · 2010

Researchers exposed brain immune cells called microglia to 2.45 GHz radiation (the same frequency used in WiFi and microwave ovens) for 20 minutes and found it activated these cells through a specific cellular pathway called STAT3. The activated microglia began producing inflammatory molecules including nitric oxide and tumor necrosis factor-alpha. This matters because microglial activation is linked to brain inflammation and neurological problems.

DNA & Genetic DamageNo Effects Found

Absence of genotoxic potential of 902 MHz (GSM) and 1747 MHz (DCS) wireless communication signals: In vivo two-year bioassay in B6C3F1 mice.

Ziemann C et al. · 2009

Researchers exposed mice to cell phone radiation (GSM and DCS signals) for 2 hours daily, 5 days a week for two years to test whether it damages DNA. They measured micronuclei (small DNA fragments that indicate genetic damage) in blood cells and found no difference between exposed and unexposed mice. This suggests that chronic exposure to these specific cell phone frequencies at the tested levels did not cause detectable genetic damage in this animal model.

DNA & Genetic DamageNo Effects Found

Human Fibroblasts and 900 MHz Radiofrequency Radiation: Evaluation of DNA Damage after Exposure and Co-exposure to 3-Chloro-4-(dichloromethyl)-5-Hydroxy-2(5h)-furanone (MX).

Sannino A et al. · 2009

Researchers exposed human skin cells to 900 MHz radiofrequency radiation (the same frequency used by GSM cell phones) for 24 hours at power levels similar to phone use. They found no DNA damage from the RF radiation alone, and the radiation did not make cells more vulnerable to damage from a known cancer-causing chemical. This suggests that cell phone-level RF exposure may not directly break DNA strands in human cells.

DNA & Genetic DamageNo Effects Found

Cytogenetic effects of exposure to 2.3 GHz radiofrequency radiation on human lymphocytes in vitro.

Hansteen IL et al. · 2009

Norwegian researchers exposed human immune cells (lymphocytes) to 2.3 GHz radiofrequency radiation - similar to what cell phones emit - for an entire cell cycle to see if it would damage DNA or chromosomes. They found no statistically significant genetic damage compared to unexposed cells, even when they added a known DNA-damaging chemical to make cells more vulnerable. This suggests that RF radiation at levels used by mobile devices may not directly break chromosomes in immune cells under these laboratory conditions.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.