3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
Research Guide

5G vs 4G Radiation: What's Different?

Based on 653 peer-reviewed studies

Share:

People often ask whether 5G is more dangerous than 4G. This question requires understanding how 5G technology differs from previous generations and what research exists on each.

5G networks operate across multiple frequency bands. Low-band 5G (600-900 MHz) is actually similar to 4G frequencies. Mid-band 5G (2.5-4 GHz) overlaps with existing WiFi. High-band 5G (24-40+ GHz, "millimeter wave") represents the newest frequencies for consumer wireless exposure.

This page compares what research shows about radiation exposure from 5G versus 4G technologies.

Key Research Findings

  • 5G uses multiple frequency bands with different characteristics
  • Millimeter waves (high-band 5G) penetrate less deeply into tissue
  • More cell towers can actually reduce individual exposure levels

Related Studies (653)

Responses of neurons to an amplitude-modulated microwave stimulus.

Beason RC, Semm P. · 2002

Researchers exposed bird brain cells to cell phone-like radio signals (900 MHz, similar to older GSM phones) and found that more than half the neurons changed their activity levels. Most responding cells (76%) increased their firing rates by an average of 3.5 times, while others decreased their activity. The researchers noted these changes suggest potential effects on humans using handheld cell phones.

Genotoxicity of radiofrequency signals. I. Investigation of DNA damage and micronuclei induction in cultured human blood cells.

Tice RR, Hook GG, Donner M, McRee DI, Guy AW. · 2002

Researchers exposed human blood cells to cell phone radiation from different technologies (CDMA, TDMA, GSM) at various power levels for 3 or 24 hours. They found that 24-hour exposures at higher power levels (5-10 W/kg) caused a four-fold increase in chromosomal damage across all phone technologies tested. This suggests that prolonged exposure to cell phone radiation can damage the genetic material in human immune cells.

Effects of exposure to low level radiofrequency fields on acetylcholine release in hippocampus of freely moving rats.

Testylier G, Tonduli L, Malabiau R, Debouzy JC · 2002

Researchers exposed freely moving rats to radiofrequency radiation at frequencies used by WiFi (2.45 GHz) and cell phones (800 MHz) to study effects on brain chemistry. They found that higher power exposures significantly reduced acetylcholine release in the hippocampus by 40-43%, a brain chemical crucial for memory and learning. The effects persisted for hours after exposure ended, suggesting that even brief RF exposure can disrupt normal brain function.

The effect of low level continuous 2.45 GHz waves on enzymes of developing rat brain.

Paulraj R, Behari J · 2002

Researchers exposed young rats to 2.45 GHz microwave radiation (the same frequency used in WiFi and microwave ovens) for 2 hours daily over 35 days at very low power levels. They found significant changes in brain chemistry, including disrupted calcium levels and altered enzyme activity that controls cell growth and development. The authors concluded these changes could promote tumor development in the developing brain.

NF-κB DNA-binding activity after high peak power pulsed microwave (8.2 GHz) exposure of normal human monocytes

Natarajan M, Vijayalaxmi , Szilagyi M, Roldan FN, Meltz ML · 2002

Researchers exposed human immune cells called monocytes to high-powered pulsed microwave radiation at 8.2 GHz for 90 minutes and measured changes in their cellular activity. They found that the radiation triggered a 3.6-fold increase in the activity of NF-κB, a crucial protein that controls genes involved in inflammation, immune responses, and cell survival. This demonstrates that microwave radiation can activate important cellular signaling pathways that regulate long-term cellular functions.

Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection.

Di Carlo A, White N, Guo F, Garrett P, Litovitz T. · 2002

Researchers exposed chick embryos to electromagnetic fields (both extremely low frequency and radio frequency) for 4 days and found that chronic exposure reduced levels of HSP70, a protective protein that helps cells survive stress. The EMF exposure made the embryos 27% less able to protect themselves against cellular damage. This suggests that daily EMF exposure, like what mobile phone users experience, could weaken the body's natural defense systems and potentially increase disease risk.

The Effect of 835.62 MHz FDMA or 847.74 MHz CDMA Modulated Radiofrequency Radiation on the Induction of Micronuclei in C3H 10T½ Cells. Radiat.

Bisht KS, Moros EG, Straube WL, Baty JD, Roti Roti JL · 2002

Researchers exposed mouse cells to cell phone radiation at power levels similar to phones for up to 24 hours, testing for DNA damage. They found no increase in genetic damage compared to unexposed cells, suggesting these frequencies may not directly harm DNA.

[Enzymatic activity of some tissues and blood serum from animals and humans exposed to microwaves and hypothesis on the possible role of free radical processes in the nonlinear effects and modification of emotional behavior of animals]

Akoev IG et al. · 2002

Russian researchers exposed rats and humans to very low-power microwave radiation (0.8-10 microW/cm²) and measured changes in key enzymes that control cellular energy and brain chemistry. They found that even these extremely weak exposures triggered complex biochemical changes, including altered enzyme activity and behavioral changes in rats. The researchers propose that microwaves activate free radicals in cells, setting off chain reactions that can damage cellular energy production.

Effects of extremely low frequency electromagnetic field and its combination with lead on the antioxidant system in mouse.

Liu Y, Weng E, Zhang Y, Hong R. · 2002

Researchers exposed mice to 50 Hz magnetic fields for two weeks and measured cellular damage. Higher magnetic field strengths increased harmful oxidative stress while reducing natural antioxidant defenses in brain and liver tissue, suggesting EMF exposure may compromise the body's ability to protect against cellular damage.

DNA & Genetic DamageNo Effects Found

Micronuclei in the peripheral blood and bone marrow cells of rats exposed to 2450 MHz radiofrequency radiation.

Vijayalaxmi et al. · 2001

Researchers exposed rats to 2450 MHz radiofrequency radiation (the same frequency used in microwave ovens and Wi-Fi) for 24 hours at high intensity levels to see if it would damage their DNA. They looked for micronuclei (tiny fragments that indicate genetic damage) in blood and bone marrow cells. The study found no significant DNA damage compared to unexposed rats, even at radiation levels much higher than typical human exposure.

DNA & Genetic DamageNo Effects Found

Chromosome damage and micronucleus formation in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (847.74 MHz, CDMA).

Vijayalaxmi et al. · 2001

Researchers exposed human blood cells to cell phone radiation at 847.74 MHz for 24 hours to see if it would damage DNA or cause chromosome breaks. They found no significant genetic damage compared to unexposed cells, even at high exposure levels (4.9-5.5 W/kg SAR). This suggests that this particular frequency and exposure duration may not directly harm cellular DNA.

DNA & Genetic DamageNo Effects Found

Cytogenetic Studies in Human Blood Lymphocytes Exposed In Vitro to Radiofrequency Radiation at a Cellular Telephone Frequency (835.62 MHz, FDMA).

Vijayalaxmi et al. · 2001

Researchers exposed human blood cells to cell phone radiation at 835.62 MHz for 24 hours to see if it caused DNA damage. They found no increase in chromosomal breaks or other genetic damage markers compared to unexposed cells, even at high exposure levels. This suggests that this specific type of cell phone radiation may not directly damage DNA in blood cells under laboratory conditions.

DNA & Genetic DamageNo Effects Found

Effect of Exposure to 900 MHz Radiofrequency Radiation on Intrachromosomal Recombination in pKZ1 Mice.

Sykes PJ, McCallum BD, Bangay MJ, Hooker AM, Morley AA · 2001

Researchers exposed mice to 900 MHz radiofrequency radiation (similar to cell phones) for up to 25 days to see if it affected DNA recombination in spleen cells. They found no effects after short exposures, but after 25 days of exposure, DNA recombination actually decreased below normal levels. While this wasn't the DNA damage scientists typically look for, it suggests RF radiation can alter how cells repair their DNA, though the health significance of this change remains unknown.

Cancer & TumorsNo Effects Found

Neoplastic Transformation in C3H 10T(1/2) Cells after Exposure to 835.62 MHz FDMA and 847.74 MHz CDMA Radiations.

Roti Roti JL et al. · 2001

Researchers exposed mouse cells to cell phone radiation at frequencies used by FDMA and CDMA networks (835-848 MHz) for 7 days to see if it would cause normal cells to become cancerous. They also tested whether this radiation could promote cancer development in cells already damaged by X-rays. The study found no increased cancer transformation in cells exposed to either type of cell phone radiation compared to unexposed cells.

Cellular EffectsNo Effects Found

Radiofrequency electromagnetic fields do not alter the cell cycle progression of C3H 10T and U87MG cells.

Higashikubo R et al. · 2001

Researchers exposed mouse and human cells to radiofrequency radiation at frequencies used by cell phones (835-847 MHz) for up to 100 hours to see if it affected how cells divide and grow. They found no changes in cell division patterns compared to unexposed cells. This suggests that RF radiation at these power levels doesn't disrupt normal cellular reproduction processes.

DNA & Genetic DamageNo Effects Found

Measurement of DNA damage in mammalian cells exposed in vitro to radiofrequency fields at sars of 3-5 w/kg.

Li L et al. · 2001

Researchers exposed mouse cells to radiofrequency radiation at levels of 3.2-5.1 watts per kilogram (similar to cell phone exposure levels) for up to 24 hours to see if it would damage DNA. Using a sensitive test called the comet assay, they found no detectable DNA damage in the exposed cells compared to unexposed control cells. This suggests that RF exposure at these specific levels and durations may not cause immediate genetic damage in laboratory conditions.

Analysis of the influence of the cell geometry, orientation and cell proximity effects on the electric field distribution from direct RF exposure.

Sebastian JL, Munoz S, Sancho M, Miranda JM · 2001

Spanish researchers used computer modeling to study how radiofrequency radiation at cell phone frequencies (900 MHz and 2450 MHz) penetrates individual cells. They found that a cell's shape, orientation, and proximity to other cells dramatically affects how much electromagnetic energy gets absorbed into the cell membrane and interior. The study revealed that cells don't absorb RF energy uniformly - the geometry and positioning matter significantly for determining biological effects.

Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies.

Peyman A, Rezazadeh AA, Gabriel C · 2001

Researchers measured how different rat tissues absorb microwave radiation at various ages, from young to adult rats. They found that younger animals' tissues absorb significantly more radiation than older animals, particularly in brain, skull, and skin tissues. This suggests that children may absorb more EMF radiation from cell phones and other wireless devices than adults do.

Oxidative Stress200 citations

Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes.

Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM · 2001

Researchers had 12 healthy men carry cell phones in their pockets for up to 4 hours and measured markers of oxidative stress in their blood. They found that even phones in standby mode significantly increased harmful lipid peroxides (cellular damage markers) and reduced the activity of protective antioxidant enzymes. This suggests that cell phone radiation creates harmful free radicals in the body, potentially damaging cells through oxidative stress.

Comparison of chromosome aberrations in peripheral blood lymphocytes from people occupationally exposed to ionizing and radiofrequency radiation.

Lalic H, Lekic A, Radosevic-Stasic B. · 2001

Researchers examined blood cells from 45 workers exposed to radiofrequency radiation (radio-relay stations) and ionizing radiation (hospitals) to look for DNA damage. They found that both groups had significantly more chromosome breaks and abnormalities compared to unexposed people - about 4 times higher for certain types of damage. The study suggests that prolonged occupational RF exposure can damage DNA at the cellular level, similar to the well-established effects of ionizing radiation.

2-Methoxyethanol metabolism, embryonic distribution, and macromolecular adduct formation in the rat: the effect of radiofrequency radiation-induced hyperthermia.

Cheever KL et al. · 2001

Researchers exposed pregnant rats to radiofrequency radiation (10 MHz) combined with a toxic industrial solvent to understand why this combination causes more birth defects than either exposure alone. They found that RF radiation slowed the body's ability to clear the toxic chemical from the system over 24-48 hours, though it didn't change how the chemical was processed or distributed to developing embryos. This suggests RF radiation may enhance chemical toxicity by interfering with the body's natural detoxification processes.

Effects of acute exposure to the radiofrequency fields of cellular phones on plasma lipid peroxide and antioxidase activities in human erythrocytes.

Moustafa YM, Moustafa RM, Belacy A, Abou-El-Ela SH, Ali FM. · 2001

Researchers tested 12 healthy men who carried cell phones in standby mode in their pockets for up to 4 hours. They found that even this minimal exposure significantly increased markers of cellular damage (lipid peroxides) and reduced the body's natural antioxidant defenses. This suggests that cell phones can trigger oxidative stress - the same biological process linked to aging and disease - even when not actively being used.

Further Reading

For a comprehensive exploration of EMF health effects and practical protection strategies, explore these books by R Blank and Dr. Martin Blank.