3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,644 studies in Brain & Nervous System

Stress-related endocrinological and psychopathological effects of short- and long-term 50Hz electromagnetic field exposure in rats.

Szemerszky R, Zelena D, Barna I, Bárdos G. · 2010

Researchers exposed rats to 50 Hz electromagnetic fields (household electrical frequency) for weeks and found increased blood sugar, stress hormones, and depression-like behavior compared to short-term exposure. This suggests chronic EMF exposure may act as a mild stressor affecting mood and metabolism.

Effect of magnetic field on food and water intake and body weight of spinal cord injured rats.

Kumar S, Jain S, Behari J, Avelev VD, Mathur R. · 2010

Researchers exposed rats with spinal cord injuries to extremely low frequency magnetic fields (50 Hz, 17.9 microT) for 2 hours daily over 8 weeks. The magnetic field exposure restored normal food intake, water consumption, and body weight in the paralyzed rats, all of which had decreased after their spinal cord injuries. This suggests that specific magnetic field frequencies might help support basic physiological functions in spinal cord injury patients.

Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin-induced diabetic rats.

Gulturk S et al. · 2010

Scientists exposed diabetic rats to 50 Hz magnetic fields (from power lines) for three hours daily over 30 days. The magnetic fields increased blood-brain barrier permeability, allowing substances to pass more easily into brain tissue. This matters because a compromised barrier can let toxins reach the brain.

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice.

Cuccurazzu B et al. · 2010

Italian researchers exposed mice to 50 Hz electromagnetic fields (European power line frequency) for up to seven hours daily over one week. This significantly increased new brain cell growth in the hippocampus, improving long-term memory formation and suggesting potential therapeutic applications for brain regenerative medicine.

Effects of extremely low-frequency magnetic field on caspase activities and oxidative stress values in rat brain.

Akdag MZ et al. · 2010

Researchers exposed rats to extremely low-frequency magnetic fields at levels matching current safety standards for 2 hours daily over 10 months. They found that these exposures significantly increased oxidative stress (cellular damage from free radicals) and weakened the brain's natural antioxidant defenses, though they didn't trigger cell death. This suggests that even magnetic field exposures within current safety limits may cause harmful biochemical changes in brain tissue over time.

Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons.

Xu S et al. · 2010

Researchers exposed brain neurons to cell phone radiation (1800 MHz) for 24 hours and found it damaged mitochondrial DNA-the genetic material in cells' energy centers. The radiation created harmful molecules that reduced neurons' ability to produce energy, suggesting potential cellular harm from prolonged exposure.

Effects of acute and chronic low frequency electromagnetic field exposure on PC12 cells during neuronal differentiation

Morabito C, Guarnieri S, Fanò G, Mariggiò MA · 2010

Researchers exposed nerve cells to electromagnetic fields for 30 minutes or 7 days. Brief exposures increased harmful molecules and disrupted calcium signaling essential for nerve function, while longer exposures showed different effects. These findings suggest EMF exposure can interfere with healthy nerve cell development.

Stress-related endocrinological and psychopathological effects of short- and long-term 50 Hz electromagnetic field exposure in rats

Szemerszky R, Zelena D, Barna I, Bárdos G. · 2010

Researchers exposed rats to 50 Hz magnetic fields (the type from power lines) for either 5 days or 4-6 weeks to study stress effects. They found that long-term exposure led to depression-like behavior, elevated stress hormones, and higher blood glucose levels, while short-term exposure showed no effects. This suggests that chronic exposure to magnetic fields may act as a mild stressor that could contribute to depression and metabolic problems.

Effects of prenatal exposure to a 50-Hz magnetic field on one-trial passive avoidance learning in 1-day-old chicks.

Sun H, Che Y, Liu X, Zhou D, Miao Y, Ma Y. · 2010

Researchers exposed chick embryos to 50-Hz magnetic fields (the type from power lines) during development and tested their memory after hatching. Chicks exposed to magnetic fields showed impaired memory formation, but only when they were stressed during testing. This suggests that electromagnetic field exposure during development may make the brain more vulnerable to memory problems under stressful conditions.

Sinusoidal ELF magnetic fields affect acetylcholinesterase activity in cerebellum synaptosomal membranes

Ravera S et al. · 2010

Italian researchers exposed brain cell membranes to 50 Hz magnetic fields (the same frequency as electrical power lines) and found that a key enzyme called acetylcholinesterase was reduced by 27%. This enzyme is crucial for proper nerve signaling in the brain. The effect occurred at magnetic field levels of 0.74 milliTesla and was completely reversible when the exposure stopped.

Effect of exposure to 50 Hz magnetic field with or without insulin on blood-brain barrier permeability in streptozotocin-induced diabetic rats.

Gulturk S et al. · 2010

Researchers exposed diabetic rats to power line frequency magnetic fields for 30 days. The magnetic fields weakened the blood-brain barrier, which normally protects the brain from harmful substances. Diabetic animals with magnetic field exposure showed the worst barrier damage, potentially allowing toxins easier brain access.

Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice

Cuccurazzu B et al. · 2010

Researchers exposed mice to 50 Hz electromagnetic fields (power line frequency) for up to seven hours daily over one week. The exposure significantly increased new brain cell growth in the hippocampus, the brain region responsible for memory formation, suggesting certain EMF exposures may enhance rather than harm brain function.

Mobile-phone pulse triggers evoked potentials

Carrubba S, Frilot C 2nd, Chesson AL Jr, Marino AA · 2010

Researchers exposed 20 volunteers to mobile phone pulses (217 Hz frequency) while monitoring brain activity. Advanced analysis detected measurable brain responses in 90% of participants, suggesting mobile phones create detectable changes in brain function that standard testing methods miss.

The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

Yang X, He G, Hao Y, Chen C, Li M, Wang Y, Zhang G, Yu Z · 2010

Researchers exposed brain immune cells called microglia to 2.45 GHz radiofrequency radiation (the same frequency used in WiFi and microwave ovens) for 20 minutes at high intensity. They found that this EMF exposure triggered inflammation in the brain cells by activating a specific molecular pathway called JAK2-STAT3, which led to increased production of inflammatory chemicals. This suggests that EMF exposure may contribute to brain inflammation through well-defined biological mechanisms.

Exposure to 1800 MHz radiofrequency radiation induces oxidative damage to mitochondrial DNA in primary cultured neurons

Xu S et al. · 2010

Researchers exposed brain neurons to cell phone-frequency radiation (1800 MHz) at levels similar to heavy phone use and found it damaged the DNA inside cellular powerhouses called mitochondria. The radiation increased markers of DNA damage by 24 hours and reduced the neurons' ability to produce energy. Importantly, the antioxidant melatonin completely prevented this damage, suggesting oxidative stress was the underlying cause.

Purkinje cell number decreases in the adult female rat cerebellum following exposure to 900 MHz electromagnetic field

Sonmez OF, Odaci E, Bas O, Kaplan S · 2010

Researchers exposed adult female rats to 900 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over 28 days. They found that exposed rats had significantly fewer Purkinje cells in their cerebellum compared to unexposed rats. Purkinje cells are critical brain neurons that control movement, balance, and coordination, making their loss potentially serious for neurological function.

The effect of mobile phone on the number of Purkinje cells: a stereological study

Rağbetli MC et al. · 2010

Researchers exposed pregnant mice to cell phone radiation at levels similar to what phones emit during calls (0.95 W/kg SAR) and examined brain development in their offspring. They found a significant decrease in Purkinje cells, which are crucial neurons in the cerebellum that control movement and coordination. This suggests that prenatal exposure to mobile phone radiation may affect normal brain development.

Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain.

Maskey D et al. · 2010

Researchers exposed mice to cell phone frequency radiation (835 MHz) for up to one month and examined brain tissue in the hippocampus, a region critical for memory and learning. They found significant damage to calcium-binding proteins and near-complete loss of pyramidal brain cells in the CA1 area after one month of exposure. This cellular damage could disrupt normal brain functions including memory formation and neural connectivity.

Radiofrequency fields, transthyretin, and Alzheimer's disease

Söderqvist F, Hardell L, Carlberg M, Mild KH · 2010

Researchers exposed 41 people to cell phone radiation for 30 minutes and found it increased levels of transthyretin (TTR), a protein that helps protect the brain from Alzheimer's disease by clearing harmful plaques. In a separate study of 313 people, longer-term phone use was also linked to higher TTR levels. This suggests cell phone radiation might actually trigger a protective response in the brain against Alzheimer's disease.

Effects of mobile phone use on brain tissue from the rat and a possible protective role of vitamin C - a preliminary study.

Imge EB, Kiliçoğlu B, Devrim E, Cetin R, Durak I · 2010

Researchers exposed rats to cell phone radiation (900 MHz) for four weeks and measured changes in brain tissue chemistry. They found that phone radiation reduced the activity of key protective enzymes in the brain, but vitamin C supplementation helped restore these protective mechanisms. This suggests that cell phone radiation may stress brain cells through oxidative damage, but antioxidants might offer some protection.

Browse by Health Effect