Su L, Wei X, Xu Z, Chen G · 2017
Researchers exposed three types of brain cells to cell phone radiation (1800 MHz) at high power levels for up to 24 hours to see if it would damage DNA or disrupt normal cell behavior. They found no evidence of DNA breaks, changes in cell growth, or other harmful effects even at radiation levels twice as high as current safety limits. The study suggests that this frequency of radiofrequency radiation may not directly damage brain cells in laboratory conditions.
Shirai T et al. · 2017
Researchers exposed pregnant rats and their offspring to eight different wireless communication frequencies (from cell phones to WiFi) for 20 hours daily throughout pregnancy and early development. They found no adverse effects on pregnancy outcomes, offspring development, memory function, or reproductive ability across two generations of rats. This study suggests that simultaneous exposure to multiple wireless frequencies at communication signal levels may not harm reproductive health or early development.
Schoeni A, Roser K, Röösli M. · 2017
Swiss researchers followed 439 adolescents for one year to see if radiofrequency radiation from mobile phones caused health symptoms like tiredness, headaches, or concentration problems. They found that symptoms were linked to heavy device usage patterns like texting frequency, but not to actual radiation exposure levels. This suggests that behavioral factors from excessive screen time, rather than the electromagnetic fields themselves, may be responsible for reported health complaints.
Schauer I, Mohamad Al-Ali B. · 2017
Researchers studied 468 men at an infertility clinic to see if carrying cell phones in pants pockets combined with varicocele (enlarged veins in the scrotum) would worsen sperm quality more than either condition alone. They found that both cell phone storage in pants pockets and varicocele individually affected sperm parameters, but the two factors didn't amplify each other's effects. This suggests that keeping your phone in your pants pocket affects sperm quality independently of other reproductive health issues.
Sato Y, Kojimahara N, Yamaguchi N · 2017
Japanese researchers analyzed mobile phone ownership among 82 young brain tumor patients (ages 6-18) and compared it to the general population. They found no difference in phone ownership rates between brain tumor patients and healthy children of the same age. The study suggests that mobile phone use was not associated with increased brain tumor risk in this young population.
Park J, Kwon JH, Kim N, Song K · 2017
Researchers exposed brain cells to cell phone radiation (1950 MHz) for 2 hours daily over 3 days to see if it affected amyloid-beta processing, which is linked to Alzheimer's disease. They found no significant changes in the proteins that create these brain plaques. However, the researchers noted that longer-term exposure might produce different results than their short 3-day study.
Lahham A, Sharabati A, ALMasri H. · 2017
Researchers measured WiFi radiation exposure from wireless networks at 69 locations across homes, hospitals, schools, and universities in Palestine. They found power density levels averaging 0.12 μW/cm², with the highest exposures near university access points and the lowest in schools. All measured levels were well below international safety guidelines, staying at least 221 times below recommended limits even in worst-case scenarios.
Haas AJ et al. · 2017
French researchers exposed nerve cells to 60.4 GHz millimeter wave radiation (the type used in 5G and some wireless systems) for 24 hours to see if it affected dopamine, a key brain chemical involved in movement and mood. They found no significant changes in dopamine production or processing, with only a slight increase in one dopamine byproduct that they attributed to heating effects. This suggests that millimeter wave exposure at these levels doesn't disrupt basic nerve cell function related to dopamine.
Ghatei N et al. · 2017
Researchers exposed pregnant mice and their offspring to cell phone radiation at 900 and 1800 MHz frequencies, then examined how this affected genes related to cell death and DNA repair in the brain's cerebellum. They found that the radiation did not trigger cell death pathways but did alter expression of genes involved in DNA repair. The authors concluded that while cell phone radiation may cause some cellular changes, the brain appears capable of repairing any damage through normal cellular mechanisms.
Danese E et al. · 2017
Italian researchers exposed blood samples from 14 healthy volunteers to 900 MHz radiofrequency radiation from a commercial mobile phone for 30 minutes, then examined the cells for DNA damage markers called gamma-H2AX foci. They found no significant increase in DNA breaks or genetic damage compared to unexposed blood samples. This suggests that short-term mobile phone radiation exposure at typical frequencies may not cause immediate detectable DNA damage in human immune cells.
Choi KH et al. · 2017
Researchers followed 1,198 mother-child pairs to examine whether mobile phone use during pregnancy affects children's brain development in their first three years. While they found no direct link between prenatal phone use and developmental delays, children whose mothers had both high lead exposure and heavy phone use showed increased risk of developmental problems. This suggests that RF radiation might amplify the harmful effects of other toxins during pregnancy.
Andrianome S et al. · 2017
French researchers studied whether people who report electromagnetic hypersensitivity (EHS) have different nervous system responses compared to healthy controls, and whether exposure to common wireless signals affects their autonomic nervous system. They measured heart rate variability and skin conductance in 30 EHS individuals and 25 controls, then exposed 10 EHS participants to GSM, DECT, and Wi-Fi signals at environmental levels (1 V/m). The study found no significant differences in nervous system responses between EHS and control groups, and no measurable effects from the wireless exposures.
Villarini M et al. · 2017
Italian researchers exposed brain cancer cells (neuroblastoma) to 50 Hz magnetic fields and aluminum compounds, both separately and together, to see if they would cause DNA damage. After exposing the cells to magnetic field levels ranging from 0.01 to 1 mT for up to 5 hours, they found no DNA damage, no changes in cellular stress markers, or any harmful synergistic effects when the exposures were combined. This suggests that short-term exposure to these power-frequency magnetic fields, even in combination with aluminum, does not appear to damage DNA in these particular brain cell types.
Zhang J, Sumich A, Wang GY. · 2017
Researchers reviewed recent brain imaging and brain wave studies to examine whether mobile phone radiation affects brain function. They found that phone radiation appears to increase brain activity and efficiency, particularly in areas near where you hold the phone, and this increased activity was linked to faster reaction times and sleep disruption. The findings suggest the scientific question of mobile phone effects on the brain should be reopened, though the researchers note that long-term effects remain largely unstudied.
Yilmaz A et al. · 2017
Researchers exposed pregnant rats to mobile phone radiation (900 MHz) for 20 days and examined their offspring's livers 60 days after birth. The exposed animals showed significant liver damage including increased oxidative stress, elevated liver enzymes indicating injury, and visible tissue damage under the microscope. This study demonstrates that EMF exposure during pregnancy can cause lasting liver problems in offspring that persist into adulthood.
Yang M et al. · 2017
Researchers analyzed 11 studies involving over 17,000 people to examine whether cell phone use increases brain tumor risk. They found that using a phone for 10 or more years increased the odds of developing glioma (a type of brain tumor) by 44%, with the strongest association for tumors on the same side of the head where people held their phone. The risk was particularly high for low-grade gliomas, which more than doubled with long-term use.
Wang J, Su H, Xie W, Yu S. · 2017
Researchers analyzed seven studies involving thousands of people to determine whether mobile phone use increases headache risk. They found that mobile phone users were 38% more likely to experience headaches compared to non-users, with risk increasing dramatically based on daily call duration and frequency. The study shows a clear dose-response relationship: people making calls longer than 15 minutes daily had 2.5 times higher headache risk than those using phones less than 2 minutes daily.
Taheri M et al. · 2017
Researchers exposed two types of bacteria (Listeria and E. coli) to radiofrequency radiation from cell phones (900 MHz) and Wi-Fi routers (2.4 GHz) to see if it affected how well antibiotics worked against them. They found that RF exposure made these disease-causing bacteria more resistant to antibiotics, meaning the medications became less effective at killing them. This could have serious implications for treating infections, as it suggests our wireless devices might be contributing to the growing problem of antibiotic-resistant bacteria.
Sharma A, Kesari KK, Saxena VK, Sisodia R · 2017
Researchers exposed young mice to 10 GHz microwave radiation (similar to frequencies used in radar and some wireless communications) for 2 hours daily over 15 days. The exposed mice showed impaired spatial memory, brain tissue damage, and disrupted brain chemistry both immediately after exposure and weeks later. This suggests that developing brains may be particularly vulnerable to microwave radiation effects that persist even after exposure ends.
Shahin S, Singh SP, Chaturvedi CM · 2017
Researchers exposed female mice to 1800MHz mobile phone radiation in different modes (standby, dialing, receiving) and found significant damage to reproductive organs and hormone systems. The radiation caused oxidative stress (cellular damage from harmful molecules) and reduced the number of healthy egg follicles, while disrupting key reproductive hormones like estrogen and progesterone. This suggests that mobile phone radiation at typical cellular frequencies may interfere with female fertility through stress-related mechanisms.
Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S, Davis DL · 2017
Researchers exposed rats to 900 MHz cell phone radiation for up to 4 hours daily over 30 days and analyzed protein changes in testicular tissue. They found that radiation exposure increased levels of two specific proteins by 70% - proteins that are linked to cellular stress and cancer risk. This matters because many men carry phones in their pants pockets, creating similar exposure patterns to reproductive organs.
Sato Y, Kojimahara N, Taki M, Yamaguchi N · 2017
Japanese researchers surveyed over 4,000 children and adults to understand which ear people prefer when using mobile phones. They found that children typically use their dominant hand's ear, while adults show more complex patterns - with older adults and heavy work users more likely to use their left ear. This matters because knowing which ear gets more radiation exposure helps researchers design better studies on mobile phone health effects.
Qureshi ST, Memon SA, Abassi AR, Sial MA, Bughio FA. · 2017
Pakistani researchers exposed chickpea seeds to radiation from cell phones (900 MHz) and laptops (3.31 GHz) for 24 and 48 hours to study DNA damage. They found that both devices caused genetic damage to plant cells, with laptop radiation being more harmful than cell phone radiation. The study suggests these everyday devices could potentially cause DNA damage and cancer-like changes in living tissue.
Pandey N, Giri S, Das S, Upadhaya P · 2017
Researchers exposed male mice to 900 MHz radiofrequency radiation (the frequency used by many cell phones) for 4-8 hours daily over 35 days. The radiation caused DNA damage in sperm-producing cells and disrupted the normal development of sperm, leading to significantly lower sperm counts. While these effects were reversible after stopping exposure, the study demonstrates that cell phone radiation can interfere with male fertility at the cellular level.
Othman H, Ammari M, Sakly M, Abdelmelek H · 2017
Researchers exposed pregnant rats to 2.45GHz WiFi signals (the same frequency used by most home routers) for 2 hours daily throughout pregnancy, then tested their offspring for developmental and behavioral changes. They found that prenatal WiFi exposure altered physical development and caused anxiety, motor problems, and learning difficulties in the young rats, with effects being more severe when combined with maternal stress. The study also revealed oxidative stress (cellular damage) in the brains of exposed offspring.