Kim JH, Kim HJ, Yu DH, Kweon HS, Huh YH, Kim HR. · 2017
Korean researchers exposed mice to cell phone-frequency radiation (835 MHz) for 5 hours daily and examined changes in brain cells. They found that this exposure significantly reduced the number of synaptic vesicles (tiny containers that store brain chemicals) and decreased levels of proteins needed for proper brain communication. These changes suggest that radiofrequency radiation may disrupt how brain cells communicate with each other.
Gevrek F. · 2017
Researchers exposed rats to cellphone radiation levels similar to human phone calls for one month. The radiation damaged the hippocampus brain region responsible for memory by killing brain cells. Ginkgo biloba extract significantly reduced this damage, suggesting potential protection against EMF harm.
Al-Serori H et al. · 2017
Austrian researchers exposed human brain tumor cells to UMTS cell phone radiation for 16 hours at levels reflecting real-world phone use (SAR levels of 0.25 to 1.0 W/kg). They found no evidence of DNA damage or chromosomal abnormalities, though the highest exposure level triggered programmed cell death in one type of brain cancer cell. This study suggests UMTS phone signals may not directly damage genetic material in brain cells.
Akbarnejad Z et al. · 2017
Researchers exposed rats with Alzheimer's-like brain damage to 50 Hz electromagnetic fields (the same frequency as power lines) for 14 days and tested their memory using a water maze. The electromagnetic field exposure significantly improved the rats' learning and memory abilities, even reversing some of the cognitive damage. This suggests that certain electromagnetic frequencies might have therapeutic potential for neurodegenerative conditions.
Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA. · 2017
Researchers exposed rats to cell phone-level radiofrequency radiation (900 MHz) for 2-3 months and found it caused oxidative stress damage in brain regions critical for memory and movement. However, when rats were given green tea extract (EGCG) before or during radiation exposure, it significantly protected against this brain damage. The study suggests that antioxidants may help shield the brain from wireless radiation effects.
Zheng Y, Dou JR, Gao Y, Dong L, Li G. · 2017
Researchers exposed brain neurons from mice to a 15 Hz magnetic field (the type found around power lines) and measured how it affected the channels that allow electrical signals to flow through nerve cells. The magnetic field disrupted these crucial channels, reducing their activity and changing how they function. This suggests that everyday magnetic field exposure could interfere with normal brain cell communication.
Zhang H et al. · 2017
Researchers exposed mice to power line frequency magnetic fields for 4 hours daily over 28 days. The exposure disrupted brain chemistry in the hippocampus, reducing proteins essential for memory and learning while increasing harmful cellular changes that could affect cognitive function.
Zeng Y, Shen Y , Hong L, Chen Y, Shi X, Zeng Q, Yu P. · 2017
Researchers exposed brain cells important for memory to power-line frequency magnetic fields for eight hours daily. The exposure reduced cell health and increased cellular damage from free radicals, suggesting household electrical fields may stress brain cells without causing severe damage.
Samiee F, Samiee K. · 2017
Researchers exposed Caspian Sea carp to extremely low frequency electromagnetic fields (the same 50 Hz frequency used in power lines and household electricity) for 30 minutes to 1 hour. Fish exposed to magnetic field strengths of 3 milliTesla or higher showed severe brain damage, including tissue death. The damage worsened with both stronger fields and longer exposure times.
Prasad A et al. · 2017
Researchers exposed brain cells called oligodendrocytes to a moderate-strength magnetic field (0.3 Tesla) for two hours daily over two weeks. The magnetic field exposure enhanced the cells' ability to mature and produce protective substances for nerve fibers, while also increasing their release of growth factors that help brain cells survive and function. This suggests that certain magnetic field exposures might actually support brain cell health and repair processes.
Pedersen C et al. · 2017
Danish researchers followed 32,006 utility workers for three decades, studying exposure to magnetic fields from power lines and electrical equipment. Workers with highest exposures showed 44% higher dementia rates and 78% higher motor neuron disease rates, suggesting occupational magnetic field exposure may increase neurological disease risk.
Ozdemir E et al. · 2017
Researchers exposed rats to 50 Hz magnetic fields (household electricity frequency) for 15 days while giving them morphine. The magnetic field exposure enhanced morphine's pain relief and reduced tolerance development. This suggests electromagnetic fields can influence how our nervous systems respond to pain medications.
Medina-Fernandez FJ et al. · 2017
Researchers used magnetic field therapy (similar to medical TMS treatment) on rats with an artificially induced multiple sclerosis-like condition. The 60 Hz magnetic fields at 0.7 milliTesla significantly reduced brain damage, improved motor symptoms, and decreased harmful oxidative stress. This suggests that controlled magnetic field exposure might have therapeutic potential for neurological conditions involving brain inflammation.
Dey S, Bose S, Kumar S, Rathore R, Mathur R, Jain S. · 2017
Researchers exposed rats with severed spinal cords to extremely low frequency magnetic fields (50 Hz at 17.96 µT) for 2 hours daily over 8 weeks. The magnetic field treatment significantly improved locomotion and reduced inflammation, tissue damage, and iron buildup at the injury site compared to untreated injured rats. This suggests that certain EMF exposures might actually help the nervous system heal from traumatic injuries.
Davarpanah Jazi S, Modolo J, Baker C, Villard S, Legros A. · 2017
Researchers exposed 10 healthy volunteers to 60 Hz magnetic fields up to 50 milliTesla (extremely high levels) while measuring brain activity and hand tremor. They found subtle changes in brain wave patterns related to touch sensation, but no effects on motor control or hand tremor. The study provides preliminary evidence that power-frequency magnetic fields can influence specific brain regions even when they don't cause obvious physical symptoms.
Cichoń N et al. · 2017
Researchers studied 48 stroke patients undergoing rehabilitation, with half receiving additional exposure to extremely low-frequency electromagnetic fields (40 Hz) for 15 minutes daily. The EMF-exposed group showed increased levels of nitric oxide compounds in their blood and demonstrated better functional and mental recovery compared to the control group. This suggests that specific EMF frequencies might help enhance brain healing after stroke.
Ayoobi F, Shamsizadeh A, Shafiei SA. · 2017
Researchers exposed 65 young adults to magnetic fields similar to power lines for three minutes. Participants showed slower reaction times after exposure compared to fake treatment, while sleepiness levels remained unchanged. This demonstrates that brief magnetic field exposure can impair cognitive performance and brain function.
Chauhan P, Verma HN, Sisodia R, Kesari KK. · 2017
Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used in WiFi and microwave ovens) for 2 hours daily over 35 days at very low power levels. The exposed rats showed significant tissue damage and oxidative stress in their brain, liver, kidney, testis, and spleen compared to unexposed control rats. This suggests that even low-level microwave radiation exposure over time may cause cellular damage throughout the body.
Ahmed NA, Radwan NM, Aboul Ezz HS, Salama NA · 2017
Researchers exposed rats to cell phone radiation for two months and found it caused brain damage in memory and movement areas. Green tea extract provided protection, but only when taken before or during exposure, not afterward. This suggests antioxidants may help prevent radiation-induced brain cell damage.
Zeng Y, Shen Y, Hong L, Chen Y, Shi X, Zeng Q, Yu P · 2017
Researchers exposed brain cells from the hippocampus (a memory center) to 50-Hz magnetic fields at 2 milliTesla for 8 hours daily and measured various biological effects. They found that repeated exposure reduced cell survival and increased harmful reactive oxygen species, but did not cause DNA damage or cell death. The study suggests that while these magnetic fields create cellular stress, they may not cause severe biological damage.
Medina-Fernandez FJ et al. · 2017
Researchers exposed rats with multiple sclerosis-like symptoms to magnetic field stimulation (0.7 mT at 60 Hz) for 2 hours daily over 3 weeks. The magnetic field treatment significantly reduced brain and spinal cord damage, improved motor symptoms, and decreased harmful oxidative stress while boosting protective antioxidant systems. This suggests that certain types of electromagnetic field exposure may actually have therapeutic benefits for neurological conditions.
Giorgi G et al. · 2017
Researchers exposed human brain cells to power line magnetic fields alone and with cellular stress. While magnetic fields alone caused minor DNA changes, combining them with stress significantly altered DNA patterns that control genes. Most changes reversed, showing cells can recover.
Falone S et al. · 2017
Researchers exposed human neuroblastoma cells (a type of brain cancer cell) to 50 Hz magnetic fields at levels similar to those found near power lines. The magnetic field exposure made the cancer cells grow faster and become more resistant to cancer treatment drugs by activating the cells' natural defense systems. This suggests that power-frequency magnetic fields might make certain brain cancers more aggressive and harder to treat.
Djordjevic NZ, Paunović MG, Peulić AS · 2017
Researchers exposed rats to 50 Hz electromagnetic fields (the type from power lines and household wiring) for one week and found the animals developed anxiety-like behaviors. Brain analysis revealed increased oxidative stress and nitric oxide in the hypothalamus, the brain region that regulates emotions and stress responses. This suggests that even short-term exposure to extremely low frequency EMFs can alter brain chemistry in ways that affect mood and behavior.
Cichoń N et al. · 2017
Researchers studied whether extremely low-frequency electromagnetic fields could help stroke patients recover by examining brain chemistry changes. They exposed 48 stroke patients to 40 Hz magnetic fields for 15 minutes daily during rehabilitation and found increased levels of nitric oxide (a brain chemical involved in healing) plus improved mental and daily functioning. This suggests that specific EMF exposures might actually support brain recovery after stroke.