3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.
All Exposure Types

Magnetic Fields (ELF)

Share:

Extremely Low Frequency (ELF) magnetic fields are produced by the flow of electrical current. They are measured in milligauss (mG) or microtesla (µT). Unlike electric fields, magnetic fields easily penetrate walls and most materials.

Concern Level Thresholds

Based on Building Biology Institute guidelines (mG (milligauss)):

No Concern
< 0.2 mG
Slight Concern
0.2 – 1 mG
Severe Concern
1 – 5 mG
Extreme Concern
> 5 mG

See where common exposures fall on the scale:

Your RF Exposure in ContextA logarithmic scale showing your reading relative to Building Biology concern thresholds and FCC regulatory limits.Your RF Exposure in ContextNo ConcernSlightSevereExtreme0.215FCC Limit 0.0110,000 mG

Showing 443 studies with measured magnetic fields (elf) exposure

The mechanism of magnetic field-induced increase of excitability in hippocampal neurons.

Ahmed Z, Wieraszko A. · 2008

Researchers exposed hippocampus brain tissue to pulsed magnetic fields (15 mT at 0.16 Hz) for 30 minutes and found significant increases in brain cell excitability and electrical activity. The magnetic field exposure enhanced both excitatory and inhibitory brain processes, with effects that were independent of normal learning pathways. This demonstrates that even brief magnetic field exposure can directly alter fundamental brain function at the cellular level.

Possible role of iron containing proteins in physiological responses of soybean to static magnetic field.

Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M · 2018

Researchers exposed soybean plants to magnetic fields for five hours daily over five days. The magnetic fields altered iron-containing proteins that help plants manage cellular stress, with different field strengths producing opposite effects. This demonstrates how magnetic fields can influence biological processes in living organisms.

Evaluation of inflammatory biomarkers associated with oxidative stress and histological assessment of magnetic therapy on experimental myopathy in rats.

Vignola MB et al. · 2012

Researchers exposed rats with muscle inflammation to pulsed electromagnetic fields (PEMF) at 20 mT and 50 Hz for 30 minutes daily over 8 days. The PEMF treatment significantly reduced inflammatory markers and oxidative stress indicators while promoting muscle healing. This suggests that specific electromagnetic field exposures may have therapeutic benefits for muscle injuries, though the high field strength used is much greater than typical environmental exposures.

Antioxidant capacity of parsley cells (Petroselinum crispum L.) in relation to iron-induced ferritin levels and static magnetic field

Rajabbeigi E, Ghanati F, Abdolmaleki P, Payez A · 2013

Researchers exposed parsley cells to strong static magnetic fields and found the fields boosted antioxidant enzyme activity, protecting cells from damage. However, when combined with iron, the magnetic fields disrupted normal cellular defenses, suggesting these fields can interfere with how cells protect themselves.

Increase of seed germination, growth and membrane integrity of wheat seedlings by exposure to static and a 10-KHz electromagnetic field.

Payez A et al. · 2013

Iranian researchers exposed wheat seeds to 10-kHz electromagnetic fields for five hours daily over four days. The electromagnetic exposure accelerated seed sprouting and strengthened plant cell membranes while increasing protective antioxidants. This demonstrates that electromagnetic fields can produce measurable biological effects in living organisms.

The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera)

Todorović D et al. · 2013

Researchers exposed beetle pupae to a 50 milliTesla static magnetic field (about 1,000 times stronger than Earth's magnetic field) to study development and behavior. While the magnetic field didn't affect how long it took beetles to develop from pupae to adults, it did alter their movement patterns and activity levels once they became adults. This suggests that even non-radiofrequency magnetic fields can influence nervous system function in living organisms.

Effect of magnetic fields on antioxidative defense and fitness-related traits of Baculum extradentatum (insecta, phasmatodea).

Todorović D et al. · 2012

Researchers exposed stick insect nymphs to magnetic fields and measured their antioxidant defenses and development patterns. They found that both constant (50 mT) and alternating (6 mT at 50 Hz) magnetic fields increased antioxidant enzyme activity and altered development timing. This suggests magnetic fields can trigger biological stress responses even in simple organisms.

The embryonic and post-embryonic development in two Drosophila species exposed to the static magnetic field of 60 mT.

Savić T, Janać B, Todorović D, Prolić Z. · 2011

Researchers exposed fruit fly embryos to a 60 millitesla static magnetic field (about 1,200 times stronger than Earth's magnetic field) throughout their development from egg to adult. The magnetic field exposure reduced survival rates in both species tested and altered their development timing. This suggests that strong magnetic fields can act as biological stressors that interfere with normal growth and development processes.

Impact of Static Magnetic Field on the Antioxidant Defence System of Mice Fibroblasts.

Glinka M et al. · 2018

Polish researchers exposed mouse skin cells (fibroblasts) to static magnetic fields ranging from 100 to 700 milliTesla to see how it affected their antioxidant defense systems. They found that the magnetic fields actually decreased the activity of two key antioxidant enzymes but didn't cause oxidative stress or damage the cells' energy production. This suggests static magnetic fields may have mild antioxidant-like effects rather than harmful oxidative effects.

Long - term exposure of cockroach Blaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: Effects on antioxidant biomarkers and nymphal gut mass.

Todorović D et al. · 2019

Researchers exposed cockroach nymphs to magnetic fields for 5 months and found significant biological changes, including reduced gut mass and altered antioxidant enzyme activity. The magnetic fields (both static and extremely low frequency) acted as biological stressors, disrupting the insects' cellular defense systems that protect against oxidative damage. This demonstrates that long-term magnetic field exposure can cause measurable biological stress responses in living organisms.

Effects of static magnetic fields on the voltage-gated potassium channel currents in trigeminal root ganglion neurons.

Shen JF, Chao YL, Du L. · 2007

Researchers exposed rat nerve cells from the trigeminal ganglion (which controls facial sensation) to static magnetic fields at 125 millitesla and measured how this affected potassium channels that help control nerve cell activity. They found that the magnetic field altered how these channels turned off (inactivated), potentially disrupting normal nerve function. This suggests that moderate-strength magnetic fields can physically deform cell membranes and change how critical ion channels operate.

Static magnetic field exposure-induced oxidative response and caspase-independent apoptosis in rat liver: effect of selenium and vitamin E supplementations.

Ghodbane S, Ammari M, Lahbib A, Sakly M, Abdelmelek H. · 2015

Researchers exposed rats to strong static magnetic fields (128 mT) for one hour daily over five days and found significant liver damage, including increased oxidative stress and cell death through a process called apoptosis. The brain showed no similar damage, suggesting the liver is more vulnerable to magnetic field exposure. Even antioxidant supplements like selenium and vitamin E couldn't fully protect against the liver cell death.

Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations.

Ghodbane S, Lahbib A, Ammari M, Sakly M, Abdelmelek H. · 2015

Researchers exposed rats to strong magnetic fields for one hour daily over five days. The exposure increased oxidative stress markers by 25-34% in kidney tissue but not muscle. Selenium and vitamin E supplements prevented this kidney damage, suggesting antioxidants may protect against magnetic field effects.

Vitamin E prevents glucose metabolism alterations induced by static magnetic field in rats

Ghodbane S1 et al. · 2014

Researchers exposed rats to static magnetic fields (128 mT) for one hour daily over five days and found the exposure disrupted glucose metabolism, increasing blood sugar levels by 21% and reducing liver energy storage. However, vitamin E supplementation prevented these metabolic disruptions, suggesting antioxidants may protect against magnetic field-induced metabolic damage.

Effects of exposure to static magnetic field on motor skills and iron levels in plasma and brain of rats.

Elferchichi M, Ammari M, Maaroufi K, Sakly M, Abdelmelek H. · 2011

Researchers exposed rats to magnetic fields daily for five days. While motor skills remained normal, blood iron processing changed significantly - the iron-carrying protein increased 25% while actual iron levels dropped 16%. This shows magnetic fields can disrupt how bodies handle essential minerals.

Effect of selenium pre-treatment on plasma antioxidant vitamins A (retinol) and E (α-tocopherol) in static magnetic field-exposed rats

Ghodbane S et al. · 2011

Researchers exposed rats to static magnetic fields (128 mT) for one hour daily over five days and found significant depletion of antioxidant vitamins A and E in the blood, indicating oxidative stress. However, when rats were pre-treated with selenium supplements for 30 days, these harmful effects were prevented. This suggests that magnetic field exposure can overwhelm the body's natural antioxidant defenses, but proper nutrition may offer protection.

Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean

Shine MB, Guruprasad KN, Anand A · 2012

Researchers exposed soybean seeds to static magnetic fields of 150 and 200 mT (milliTesla) for one hour and found the treatment significantly increased production of reactive oxygen species (ROS) - harmful molecules that can damage cells. The magnetic exposure disrupted the plants' natural antioxidant defenses while triggering enzymes that produce more oxidative stress. This study provides biological evidence that magnetic fields can alter cellular chemistry in living organisms.