3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

Whole Home EMF Research

ELF MagneticELF ElectricRF

Research on EMF throughout the home - electrical wiring, smart home hubs, and WiFi coverage.

5
Sources
2,549
Studies
3
EMF Types

Related Studies (1,669)

Cellular EffectsNo Effects Found

Microscopic observation of living cells during their exposure to modulated electromagnetic fields

Moisescu MG, Leveque P, Bertrand JR, Kovacs E, Mir LM · 2008

French researchers developed a special microscope system to watch living cells in real time while exposing them to mobile phone-like electromagnetic fields at 900 MHz. They found that one hour of exposure at levels similar to heavy cell phone use increased the rate at which cells absorbed materials from their environment (endocytosis), but didn't affect cell division timing or duration. This study is significant because it's one of the few to directly observe cellular changes as they happen during EMF exposure.

Physiologically patterned weak magnetic fields applied over left frontal lobe increase acceptance of false statements as true.

Ross ML, Koren SA, Persinger MA. · 2008

Researchers exposed 50 people to weak magnetic fields over their left forehead while they processed true or false statements about word definitions. Those exposed to specific pulsed magnetic field patterns (25 Hz or burst-firing) were twice as likely to later accept false statements as true compared to control groups. This demonstrates that extremely weak magnetic fields can directly influence cognitive judgment and decision-making processes in the brain.

Effect of 1.8 GHz radiofrequency electromagnetic fields on gene expression of rat neurons

Zhang SZ, Yao GD, Lu DQ, Chiang H, Xu ZP. · 2008

Chinese researchers exposed rat brain neurons to 1.8 GHz radiofrequency radiation (the same frequency used in cell phones) at 2 W/kg for up to 24 hours. They found that 34 genes changed their expression patterns, including genes involved in brain cell structure and signaling. The changes were more pronounced with intermittent exposure than continuous exposure, suggesting that the pattern of EMF exposure matters for biological effects.

Extremely low-frequency magnetic fields effects on the snail single neurons.

Partsvania B, Sulaberidze T, Modebadze Z, Shoshiashvili L. · 2008

Researchers exposed isolated snail brain cells to extremely low-frequency magnetic fields at the same frequencies used in cell phones (8.34 and 217 Hz) and measured how the neurons responded to electrical signals. They found that EMF exposure disrupted the normal learning process in these nerve cells, causing them to lose their ability to filter out repeated stimuli. This suggests that EMF exposure can interfere with basic neural functions that are fundamental to learning and memory.

Effects of modulated microwave radiation at cellular telephone frequency (1.95 GHz) on X-ray-induced chromosome aberrations in human lymphocytes in vitro.

Manti L et al. · 2008

Researchers exposed human blood cells to cell phone radiation, then X-rays, to test DNA damage effects. While radiation didn't increase damaged cells overall, it increased chromosome damage within affected cells by a small but significant amount, suggesting interference with DNA repair processes.

Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells.

Yao K, Wu W, Wang K, Ni S, Ye P, Yu Y, Ye J, Sun L. · 2008

Researchers exposed human eye lens cells to 1.8 GHz radiofrequency radiation (the frequency used by GSM cell phones) at power levels of 1-4 watts per kilogram for 2 hours. They found that higher exposure levels caused DNA damage and increased harmful molecules called reactive oxygen species in the cells. Interestingly, when they added electromagnetic 'noise' to the radiation, it prevented these cellular damage effects.

Effect of a chronic GSM 900 MHz exposure on glia in the rat brain

Ammari M et al. · 2008

French researchers exposed rats to cell phone radiation (GSM 900 MHz) for 6 months and examined their brain tissue for signs of inflammation. They found that high-level exposure (6 W/kg SAR) caused persistent activation of glial cells, which are the brain's immune cells that respond to injury or stress. This suggests the radiation may have caused ongoing brain inflammation even 10 days after exposure ended.

Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity

Ammari M, Lecomte A, Sakly M, Abdelmelek H, de-Seze R · 2008

French researchers exposed rats to cell phone radiation for seven days and found that high-intensity exposure significantly reduced brain energy production in areas controlling memory and motor function, while lower intensity showed no effects, suggesting certain radiation levels may disrupt normal brain cell function.

Apoptosis is Induced by Radiofrequency Fields through the Caspase-Independent Mitochondrial Pathway in Cortical Neurons

Joubert, V., Bourthoumieu, S., Leveque, P. and Yardin, C. · 2008

Researchers exposed rat brain cells to cell phone-level radiofrequency radiation (900 MHz at 2 W/kg SAR) for 24 hours and found it triggered programmed cell death through a specific pathway involving mitochondria. The cell death occurred even when accounting for the slight heating effect of the radiation. This suggests that RF radiation can damage brain cells through non-thermal mechanisms at exposure levels similar to what cell phones produce.

Exposure to radiation from global system for mobile communications at 1,800 MHz significantly changes gene expression in rat hippocampus and cortex.

Nittby H et al. · 2008

Swedish researchers exposed rats to cell phone radiation at 1,800 MHz for six hours and found significant changes in brain gene expression. The radiation altered genes controlling cell membranes and signal transmission in memory-critical brain regions, occurring at levels similar to extended human cell phone use.

Effects of prenatal exposure to a 900 MHz electromagnetic field on the dentate gyrus of rats: a stereological and histopathological study.

Odaci E, Bas O, Kaplan S · 2008

Researchers exposed pregnant rats to cell phone-frequency electromagnetic fields daily during pregnancy. Their offspring showed significantly fewer brain cells in the hippocampus region responsible for learning and memory, suggesting EMF exposure during pregnancy may harm developing brain tissue.

The mechanism of magnetic field-induced increase of excitability in hippocampal neurons.

Ahmed Z, Wieraszko A. · 2008

Researchers exposed hippocampus brain tissue to pulsed magnetic fields (15 mT at 0.16 Hz) for 30 minutes and found significant increases in brain cell excitability and electrical activity. The magnetic field exposure enhanced both excitatory and inhibitory brain processes, with effects that were independent of normal learning pathways. This demonstrates that even brief magnetic field exposure can directly alter fundamental brain function at the cellular level.

Effect of electric field in conditioned aversion response.

Harakawa S et al. · 2008

Researchers exposed rats to 50 Hz electric fields (the same frequency as household electricity) while training them to avoid bright environments. The electric field exposure interfered with the rats' ability to learn this avoidance behavior, suggesting the fields affected either their vision or brain function. This indicates that mammals can sense and be neurologically affected by electric fields at levels similar to those found near power lines.

Chronic exposure to low-intensity magnetic field improves acquisition and maintenance of memory.

Liu T, Wang S, He L, Ye K. · 2008

Researchers exposed rats to extremely low frequency magnetic fields (similar to power lines) for 4 weeks and found the animals performed better on memory tests. The exposed rats learned spatial tasks faster and retained memories longer than unexposed rats. This unexpected finding suggests that certain EMF exposures might enhance rather than impair brain function under specific conditions.

Extremely low-frequency electromagnetic field exposure during chronic morphine treatment strengthens downregulation of dopamine D2 receptors in rat dorsal hippocampus after morphine withdrawal.

Wang X et al. · 2008

Researchers exposed rats to extremely low-frequency electromagnetic fields (20 Hz) during morphine treatment to study brain changes after drug withdrawal. They found that EMF exposure made the reduction of dopamine D2 receptors in the hippocampus (a brain region crucial for memory and learning) even more severe during withdrawal. This suggests that EMF exposure may worsen brain chemistry changes associated with drug addiction and withdrawal.

Effects of various extremely low frequency magnetic fields on the free radical processes, natural antioxidant system and respiratory burst system activities in the heart and liver tissues.

Canseven AG, Coskun S, Seyhan N · 2008

Researchers exposed guinea pigs to household power line magnetic fields (50 Hz) for several hours daily over five days. The magnetic field exposure disrupted cellular protective systems and increased damage markers in heart and liver tissues, suggesting everyday power frequency fields may harm vital organs.

Effects of long-term exposure of extremely low frequency magnetic field on oxidative/nitrosative stress in rat liver.

Erdal N, Gürgül S, Tamer L, Ayaz L · 2008

Researchers exposed rats to 50Hz magnetic fields (the same frequency as power lines) for 4 hours daily over 45 days to study liver damage. They found that female rats showed increased oxidative stress markers in their liver tissue, indicating cellular damage to proteins. This suggests that long-term exposure to power frequency magnetic fields may harm liver function, particularly in females.

Assessment of biological changes of continuous whole body exposure to static magnetic field and extremely low frequency electromagnetic fields in mice.

Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH · 2008

Researchers exposed mice to static magnetic fields and 50 Hz electromagnetic fields (like those from power lines) continuously for 30 days to study health effects. The exposed mice lost weight, showed signs of liver stress including increased oxidative damage, and had significant changes in their blood cells and immune system markers. The study demonstrates that prolonged exposure to these common electromagnetic fields can disrupt normal body functions through oxidative stress.

Effect of a chronic GSM 900MHz exposure on glia in the rat brain.

Ammari M et al. · 2008

French researchers exposed rats to cell phone radiation (900 MHz) for 24 weeks and found that high-level exposure caused persistent brain inflammation. The study measured GFAP, a protein that increases when brain support cells called astrocytes become activated in response to injury or stress. This suggests that chronic cell phone radiation exposure may trigger ongoing inflammatory responses in brain tissue.

Exposure to GSM 900 MHz electromagnetic fields affects cerebral cytochrome c oxidase activity.

Ammari M, Lecomte A, Sakly M, Abdelmelek H, de-Seze R. · 2008

French researchers exposed rats to cell phone radiation and measured brain enzyme activity. High-intensity exposure (6 W/kg) for 15 minutes daily reduced brain activity in memory and decision-making regions after one week. Lower exposures showed no effects, suggesting intensity matters for brain function.

FAQs: EMF in Whole Home

The whole home environment contains several common sources of electromagnetic field exposure including electrical wiring, wifi routers, smart meters, power lines, appliances. Together, these 5 sources account for 2,549 peer-reviewed studies in the BioInitiative Report database examining their potential health effects.
There are 2,549 peer-reviewed studies in our database examining EMF sources commonly found in whole home environments. These studies cover 5 different EMF sources: Electrical Wiring (411 studies), WiFi Routers (302 studies), Smart Meters (1,014 studies), Power Lines (411 studies), Appliances (411 studies). The research includes both laboratory experiments and epidemiological studies from scientists worldwide.
Smart Meters has the most research with 1,014 studies, followed by Electrical Wiring (411) and Power Lines (411). This research examines various biological endpoints including cellular effects, neurological impacts, and other health outcomes from EMF exposure in whole home settings.