Barcal J, Vozeh F · 2007
Researchers exposed mice to 900 MHz electromagnetic radiation (the same frequency used by cell phones) and directly measured brain activity in two key regions: the cortex and hippocampus. They found that this radiation altered normal brain wave patterns, shifting cortical activity to lower frequencies while increasing higher frequencies in the hippocampus. These changes occurred even though the mice received lower radiation doses than humans typically get when using cell phones.
Zeni O et al. · 2007
Researchers exposed mouse cells to 900 MHz cell phone radiation for up to 30 minutes to test whether it creates harmful reactive oxygen species that damage cells. The study found no increase in these damaging molecules from RF exposure alone, suggesting this frequency may not cause oxidative cellular stress.
Wang KJ, Yao K, Lu DQ. · 2007
Researchers exposed rabbit eye lenses to microwave radiation at 2450 MHz (the same frequency as WiFi and microwave ovens) for 8 hours at various power levels. They found that exposure levels of 1.0 mW/cm² and higher caused the lens proteins to change structure, leading to decreased transparency and cloudiness that could impair vision. The higher the exposure level, the more severe the protein damage and opacity became.
Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH · 2007
Researchers exposed developing rat brain cells (hippocampal neurons) to cell phone radiation at 1800 MHz for 15 minutes daily over 8 days. At the higher exposure level (2.4 W/kg), the radiation significantly disrupted normal brain cell development, reducing the formation of dendrites (the branch-like structures neurons use to communicate) and synapses (connection points between neurons). This suggests cell phone radiation during critical developmental periods could interfere with normal brain formation.
Brillaud E, Piotrowski A, de Seze R. · 2007
French researchers exposed rats to cell phone radiation (900MHz GSM signal) for just 15 minutes and then examined their brains over the following 10 days. They found significant increases in glial cell activity (brain cells that support and protect neurons) in multiple brain regions, peaking 2-3 days after exposure. This glial response indicates the brain was reacting to the radiation exposure as if responding to injury or stress.
Baohong W et al. · 2007
Chinese researchers exposed human immune cells to 1.8 GHz microwave radiation and UV light. Microwaves alone caused no DNA damage, but when combined with UV, they disrupted normal DNA repair - initially reducing damage then increasing it hours later, suggesting unpredictable interference with cellular repair mechanisms.
Todorović D, Kalauzi A, Prolić Z, Jović M, Mutavdzić D. · 2007
Researchers exposed endangered longhorn beetles to weak magnetic fields (2 milliTesla) for five minutes and monitored their brain nerve activity. The magnetic field caused permanent changes to nerve cell activity in 7 out of 8 beetles tested, with some neurons becoming more active and others less active. This demonstrates that even brief exposure to relatively weak magnetic fields can cause lasting changes to nervous system function in living organisms.
Shen JF, Chao YL, Du L. · 2007
Researchers exposed rat nerve cells from the trigeminal ganglion (which controls facial sensation) to static magnetic fields at 125 millitesla and measured how this affected potassium channels that help control nerve cell activity. They found that the magnetic field altered how these channels turned off (inactivated), potentially disrupting normal nerve function. This suggests that moderate-strength magnetic fields can physically deform cell membranes and change how critical ion channels operate.
Manikonda PK et al. · 2007
Researchers exposed young rats to magnetic fields from power lines for 90 days, then examined their brain tissue. The exposure disrupted calcium signaling and reduced NMDA receptor function in the hippocampus, suggesting power line magnetic fields could interfere with learning and memory development.
Del Giudice E et al. · 2007
Italian researchers exposed human brain cells to 50 Hz electromagnetic fields from power lines and found significantly increased production of beta-amyloid proteins, the toxic clumps linked to Alzheimer's disease. This laboratory finding suggests a potential biological mechanism connecting household electricity exposure to Alzheimer's risk.
Zeni et al. · 2007
Researchers exposed mouse cells to 900 MHz cell phone radiation for up to 30 minutes to test whether it creates harmful molecules called reactive oxygen species. The radiation did not increase these damaging molecules at any exposure level tested, suggesting no immediate cellular harm.
Tkalec M, Malarić K, Pevalek-Kozlina B. · 2007
Researchers exposed duckweed plants to cell phone-like radiofrequency radiation at 400 and 900 MHz frequencies. The exposure caused oxidative stress, where harmful molecules damage plant cells by overwhelming natural defenses. Higher frequency radiation generally produced more severe cellular damage than lower frequencies.
Sirmatel O, Sert C, Tümer C, Oztürk A, Bilgin M, Ziylan Z · 2007
Researchers exposed 33 healthy young men to the strong magnetic field from an MRI machine (1.5 Tesla) for 30 minutes and measured changes in nitric oxide, a molecule that helps regulate blood flow and cellular function. They found that nitric oxide levels increased significantly after the magnetic field exposure compared to before. This suggests that even brief exposure to strong magnetic fields can trigger measurable biological changes in the body.
Sirmatel O, Sert C, Sirmatel F, Selek S, Yokus B · 2007
Researchers exposed 33 men to the strong magnetic field from an MRI machine (1.5 Tesla) and measured markers of oxidative stress in their blood before and after exposure. Surprisingly, they found that the magnetic field actually reduced oxidative stress by increasing the body's antioxidant capacity and decreasing harmful oxidants. This suggests that short-term exposure to strong static magnetic fields may have protective rather than harmful effects on cellular health.
Sahebjamei H, Abdolmaleki P, Ghanati F · 2007
Researchers exposed tobacco plant cells to static magnetic fields of 10 and 30 millitesla for 5 hours daily over 5 days to study effects on cellular defense systems. The magnetic field exposure disrupted the cells' antioxidant enzyme balance, decreasing some protective enzymes while increasing cellular damage markers. This suggests that magnetic fields can weaken biological cells' ability to defend against harmful oxidative stress.
Cheun BS, Yi SH, Baik KY, Lim JK, Yoo JS, Shin HW, Soh KS · 2007
Researchers exposed canine kidney cells to a 60 Hz magnetic field (the same frequency as household electricity) while measuring their light emission when stressed by hydrogen peroxide. The magnetic field altered how cells responded to oxidative stress, changing the pattern of light they emitted. This suggests that power frequency magnetic fields can influence cellular stress responses at the biochemical level.
Akdag MZ, Bilgin MH, Dasdag S, Tumer C · 2007
Researchers exposed rats to extremely low-frequency magnetic fields (the type produced by power lines and household wiring) for 2 hours daily over 10 months. They found that this exposure significantly reduced nitric oxide levels in the blood, a molecule essential for healthy blood vessel function and immune response. The magnetic field strengths tested were within current safety limits set by international guidelines.
Shin EJ et al. · 2007
Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) for one hour daily and found it significantly increased their movement and activity levels. The magnetic field exposure activated specific dopamine receptors in the brain (D1-like receptors), which are involved in movement control and reward pathways. This suggests that ELF magnetic fields can directly alter brain chemistry and behavior through changes in the dopamine system.
Manikonda PK et al. · 2007
Researchers exposed young rats to 50 Hz magnetic fields (the same frequency used in power lines) for 90 days and found significant changes in brain chemistry, specifically disrupted calcium signaling in the hippocampus, the brain region critical for memory and learning. The magnetic field exposure altered the activity of key enzymes and reduced the function of NMDA receptors, which are essential for memory formation. These findings suggest that chronic exposure to extremely low frequency magnetic fields may interfere with normal brain function and memory processes.
Ishay JS et al. · 2007
Researchers exposed worker hornets to weak 50 Hz magnetic fields (similar to power line frequency) for two weeks and found dramatic disruptions in their natural building behavior. The exposed hornets built 35-55% fewer cells, created deformed hexagonal structures, and produced more fragile comb stems compared to unexposed hornets. This demonstrates that even very low-level magnetic field exposure can interfere with complex biological processes that insects rely on for survival.
Del Giudice E et al. · 2007
Researchers exposed human brain cells to 50 Hz magnetic fields from power lines and found they produced more amyloid-beta, the toxic proteins that build up in Alzheimer's disease. This laboratory study suggests electromagnetic field exposure might contribute to brain changes associated with Alzheimer's.
Zhao R, Zhang S, Xu Z, Ju L, Lu D, Yao G. · 2007
Researchers exposed rat brain cells to cell phone radiation (1800 MHz) for 24 hours and found 34 genes changed their activity levels, affecting cell structure and function. This shows mobile phone radiation can alter how genes work in brain cells.
Ning W, Xu SJ, Chiang H, Xu ZP, Zhou SY, Yang W, Luo JH · 2007
Researchers exposed developing rat brain cells to cell phone radiation and found that higher exposure levels (2.4 W/kg) significantly reduced the formation of dendritic spines, which are essential for brain cell communication, suggesting potential interference with normal brain development during critical growth periods.
Brillaud E, Piotrowski A, de Seze R · 2007
French researchers exposed rats to 15 minutes of cell phone radiation and found brain inflammation that peaked after 2 days and lasted up to 10 days. The study measured stress proteins in brain tissue, suggesting brief phone exposure can trigger inflammatory responses in the brain.
Zhao R, Zhang S, Xu Z, Ju L, Lu D, Yao G. · 2007
Chinese researchers exposed rat brain neurons to cell phone-frequency radiation (1800 MHz) for 24 hours at power levels similar to heavy phone use. They found that 34 genes changed their activity levels, affecting how neurons function in areas like cell structure, communication, and metabolism. This demonstrates that radiofrequency radiation can alter the fundamental genetic programming of brain cells.