3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation.

Narayanan SN, Kumar RS, Karun KM, Nayak SB, Bhat PG. · 2015

Researchers exposed young rats to 900 MHz radiofrequency radiation (similar to cell phone frequencies) for one hour daily over four weeks and tested their learning and memory abilities. The exposed rats showed decreased learning abilities and poorer memory retention, especially when tested 48 hours after training. Brain tissue examination revealed structural damage to the hippocampus, the brain region critical for memory and spatial navigation.

Pathological changes in the sinoatrial node tissues of rats caused by pulsed microwave exposure.

Liu YQ, Gao YB, Dong J, Yao BW, Zhao L, Peng RY. · 2015

Researchers exposed rats to pulsed microwave radiation and found significant damage to the sinoatrial node, the heart's natural pacemaker. At moderate to high power levels, the radiation caused cell swelling, structural damage, and permanent scarring that lasted up to 12 months, potentially affecting heart rhythm control.

Structural and Ultrastructural Study of Rat Liver Influenced by Electromagnetic Radiation.

Holovská K et al. · 2015

Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used by WiFi and microwave ovens) for 3 hours daily over 3 weeks at power levels of 2.8 mW/cm². They found liver damage including inflammation, blood vessel dilation, and cellular changes including fat accumulation and dying liver cells. This suggests that chronic exposure to common microwave frequencies may harm liver function.

Effects of chronic exposure to 950 MHz ultra-high-frequency electromagnetic radiation on reactive oxygen species metabolism in the right and left cerebral cortex of young rats of different ages.

Furtado-Filho OV et al. · 2015

Brazilian researchers exposed pregnant rats and their newborns to cell phone frequency radiation (950 MHz) for 30 minutes daily throughout pregnancy and after birth. They found that 6-day-old exposed rats showed protein damage specifically in the right side of their brain, plus lower blood sugar levels. Newborn rats showed no effects, suggesting developing brains become more vulnerable to EMF damage as they mature.

Effect of Short-term 900 MHz low level electromagnetic radiation exposure on blood serotonin and glutamate levels.

Eris AH et al. · 2015

Researchers exposed rats to cell phone-level radiofrequency radiation (900 MHz) for just 45 minutes and measured changes in brain chemicals. They found that this brief exposure significantly increased blood serotonin levels, a neurotransmitter that affects mood and cognitive function. The researchers note this serotonin increase could potentially impact learning and memory abilities.

The effect of melatonin on the liver of rats exposed to microwave radiation.

Djordjevic B et al. · 2015

Serbian researchers exposed rats to 900 MHz microwave radiation (similar to cell phone frequencies) for 4 hours daily over 20-60 days and found significant liver damage, including increased oxidative stress and cellular damage markers. When rats were also given melatonin supplements, the treatment partially protected against some of the radiation-induced liver damage. This suggests that microwave radiation can harm liver function, but natural antioxidants like melatonin may offer some protection.

Circadian Rhythmicity of Antioxidant Markers in Rats Exposed to 1.8 GHz Radiofrequency Fields.

Cao H, Qin F, Liu X, Wang J, Cao Y, Tong J, Zhao H. · 2015

Researchers exposed rats to cell phone-level radiation for 2 hours daily over 32 days. The radiation disrupted natural 24-hour cycles of antioxidant production, with nighttime exposures causing the biggest drops in protective compounds like melatonin. This suggests RF radiation may interfere with the body's internal clock.

Cognitive Impairment and Neurogenotoxic Effects in Rats Exposed to Low-Intensity Microwave Radiation.

Deshmukh PS et al. · 2015

Researchers exposed rats to extremely low-intensity microwave radiation at cell phone frequencies (900, 1800, and 2450 MHz) for 180 days and found significant cognitive impairment and DNA damage in brain tissue. The exposure levels were thousands of times lower than current safety limits, yet still caused measurable harm including memory problems and genetic damage. This challenges the assumption that only high-intensity radiation poses health risks.

Neuritin reverses deficits in murine novel object associative recognition memory caused by exposure to extremely low-frequency (50 Hz) electromagnetic fields.

Zhao QR, Lu JM, Yao JJ, Zhang ZY, Ling C, Mei YA. · 2015

Researchers exposed mice to 50 Hz magnetic fields from power lines for 12 hours daily, finding it impaired memory recognition and damaged brain cells in the hippocampus. The damage was reversible with protective proteins, showing power-line frequencies can measurably affect brain function.

Exposure to 50 Hz magnetic field modulates GABAA currents in cerebellar granule neurons through an EP receptor-mediated PKC pathway.

Yang G, Ren Z, Mei YA. · 2015

Researchers exposed rat brain cells to power line frequency magnetic fields (50 Hz) and found they significantly boosted GABA receptor activity - the brain's main calming system. This change could potentially affect sleep, anxiety, and seizure control, showing how electromagnetic fields may influence brain function.

Improvement of spatial memory disorder and hippocampal damage by exposure to electromagnetic fields in an Alzheimer's disease rat model.

Liu X et al. · 2015

Researchers exposed rats with artificially induced Alzheimer's disease symptoms to 50-Hz electromagnetic fields (the same frequency as household power lines) for 60 days. The EMF exposure actually improved the rats' memory and reduced brain damage associated with Alzheimer's disease. This suggests that certain types of electromagnetic field exposure might have protective effects on the brain, contrary to concerns about EMF causing neurological harm.

Behavioural profile of Wistar rats with unilateral striatal lesion by quinolinic acid (animal model of Huntington disease) post-injection of apomorphine and exposure to static magnetic field.

Giorgetto C et al. · 2015

Researchers exposed rats with brain lesions (modeling Huntington's disease) to 3,200 Gauss static magnetic fields for seven days. Magnetic field exposure preserved brain neurons and improved movement compared to untreated rats, suggesting static magnetic fields may help brain healing in neurological conditions.

In vitro developmental neurotoxicity following chronic exposure to 50 Hz extremely low frequency electromagnetic fields (ELF-EMF) in primary rat cortical cultures.

de Groot MW, van Kleef RG, de Groot A, Westerink RH · 2015

Dutch scientists exposed developing rat brain cells to power line magnetic fields for seven days. They found minimal effects only at extremely high exposures (1000 microtesla) - about 10,000 times stronger than typical home levels. Normal residential exposures showed no significant developmental impacts.

Extremely low frequency magnetic field modulates the level of neurotransmitters.

Chung YH et al. · 2015

Researchers exposed laboratory rats to 60 Hz magnetic fields (the same frequency as household electrical systems) for 2 to 5 days and found significant changes in brain chemistry. The magnetic field exposure altered levels of key neurotransmitters including serotonin, dopamine, and norepinephrine across multiple brain regions. These chemical messengers control mood, movement, attention, and other critical brain functions.

Sensitivity of spiral ganglion neurons to damage caused by mobile phone electromagnetic radiation will increase in lipopolysaccharide-induced inflammation in vitro model.

Zuo WQ, Hu YJ, Yang Y, Zhao XY, Zhang YY, Kong W, Kong WJ. · 2015

Researchers exposed rat auditory nerve cells to mobile phone radiation at 2-4 W/kg levels, with and without mild inflammation. Radiation alone caused no damage, but significantly harmed pre-inflamed cells, suggesting EMF exposure may be more dangerous when your body is already fighting inflammation.

Comparison of the Genotoxic Effects Induced by 50 Hz Extremely Low-Frequency Electromagnetic Fields and 1800 MHz Radiofrequency Electromagnetic Fields in GC-2 Cells.

Duan W et al. · 2015

Researchers exposed mouse reproductive cells to electromagnetic fields from power lines and cell phones to compare DNA damage. Both types caused genetic damage through different mechanisms - power line fields broke DNA strands while cell phone radiation caused oxidative damage to DNA bases.

Does static magnetic field-exposure induced oxidative stress and apoptosis in rat kidney and muscle? Effect of vitamin E and selenium supplementations.

Ghodbane S, Lahbib A, Ammari M, Sakly M, Abdelmelek H. · 2015

Researchers exposed rats to strong magnetic fields for one hour daily over five days. The exposure increased oxidative stress markers by 25-34% in kidney tissue but not muscle. Selenium and vitamin E supplements prevented this kidney damage, suggesting antioxidants may protect against magnetic field effects.

Static magnetic field exposure-induced oxidative response and caspase-independent apoptosis in rat liver: effect of selenium and vitamin E supplementations.

Ghodbane S, Ammari M, Lahbib A, Sakly M, Abdelmelek H. · 2015

Researchers exposed rats to strong static magnetic fields (128 mT) for one hour daily over five days and found significant liver damage, including increased oxidative stress and cell death through a process called apoptosis. The brain showed no similar damage, suggesting the liver is more vulnerable to magnetic field exposure. Even antioxidant supplements like selenium and vitamin E couldn't fully protect against the liver cell death.

Extremely low frequency magnetic field modulates the level of neurotransmitters.

Chung YH et al. · 2015

Researchers exposed rats to 60 Hz magnetic fields (the same frequency as household electricity) for 2-5 days and measured brain chemicals called neurotransmitters. They found significant changes in key brain chemicals including dopamine, serotonin, and norepinephrine across multiple brain regions. These neurotransmitters control mood, movement, and cognitive function, suggesting that magnetic field exposure can alter brain chemistry.

Browse by Health Effect