Ross ML, Koren SA, Persinger MA. · 2008
Researchers exposed 50 people to weak magnetic fields over their left forehead while they processed true or false statements about word definitions. Those exposed to specific pulsed magnetic field patterns (25 Hz or burst-firing) were twice as likely to later accept false statements as true compared to control groups. This demonstrates that extremely weak magnetic fields can directly influence cognitive judgment and decision-making processes in the brain.
Partsvania B, Sulaberidze T, Modebadze Z, Shoshiashvili L. · 2008
Researchers exposed isolated snail brain cells to extremely low-frequency magnetic fields at the same frequencies used in cell phones (8.34 and 217 Hz) and measured how the neurons responded to electrical signals. They found that EMF exposure disrupted the normal learning process in these nerve cells, causing them to lose their ability to filter out repeated stimuli. This suggests that EMF exposure can interfere with basic neural functions that are fundamental to learning and memory.
Manti L et al. · 2008
Researchers exposed human blood cells to cell phone radiation, then X-rays, to test DNA damage effects. While radiation didn't increase damaged cells overall, it increased chromosome damage within affected cells by a small but significant amount, suggesting interference with DNA repair processes.
Ahmed Z, Wieraszko A. · 2008
Researchers exposed hippocampus brain tissue to pulsed magnetic fields (15 mT at 0.16 Hz) for 30 minutes and found significant increases in brain cell excitability and electrical activity. The magnetic field exposure enhanced both excitatory and inhibitory brain processes, with effects that were independent of normal learning pathways. This demonstrates that even brief magnetic field exposure can directly alter fundamental brain function at the cellular level.
Falone S et al. · 2008
Researchers exposed young and old rats to power line magnetic fields for 10 days. Young rats strengthened their brain's antioxidant defenses, but older rats experienced weakened protection against cellular damage, suggesting aging increases vulnerability to electromagnetic field effects.
Harakawa S et al. · 2008
Researchers exposed rats to 50 Hz electric fields (the same frequency as household electricity) while training them to avoid bright environments. The electric field exposure interfered with the rats' ability to learn this avoidance behavior, suggesting the fields affected either their vision or brain function. This indicates that mammals can sense and be neurologically affected by electric fields at levels similar to those found near power lines.
Liu T, Wang S, He L, Ye K. · 2008
Researchers exposed rats to power line frequency magnetic fields (50 Hz) for 25 days. Rats exposed 4 hours daily showed increased anxiety behaviors in tests, while 1-hour exposure had no effect, suggesting longer daily exposure to these fields may increase anxiety levels.
Liu T, Wang S, He L, Ye K. · 2008
Researchers exposed rats to extremely low frequency magnetic fields (similar to power lines) for 4 weeks and found the animals performed better on memory tests. The exposed rats learned spatial tasks faster and retained memories longer than unexposed rats. This unexpected finding suggests that certain EMF exposures might enhance rather than impair brain function under specific conditions.
Wang X et al. · 2008
Researchers exposed rats to extremely low-frequency electromagnetic fields (20 Hz) during morphine treatment to study brain changes after drug withdrawal. They found that EMF exposure made the reduction of dopamine D2 receptors in the hippocampus (a brain region crucial for memory and learning) even more severe during withdrawal. This suggests that EMF exposure may worsen brain chemistry changes associated with drug addiction and withdrawal.
Canseven AG, Coskun S, Seyhan N · 2008
Researchers exposed guinea pigs to household power line magnetic fields (50 Hz) for several hours daily over five days. The magnetic field exposure disrupted cellular protective systems and increased damage markers in heart and liver tissues, suggesting everyday power frequency fields may harm vital organs.
Erdal N, Gürgül S, Tamer L, Ayaz L · 2008
Researchers exposed rats to 50Hz magnetic fields (the same frequency as power lines) for 4 hours daily over 45 days to study liver damage. They found that female rats showed increased oxidative stress markers in their liver tissue, indicating cellular damage to proteins. This suggests that long-term exposure to power frequency magnetic fields may harm liver function, particularly in females.
Falone S et al. · 2008
Italian researchers exposed young and older rats to 50 Hz magnetic fields from power lines for 10 days. Young rats strengthened their brain's antioxidant defenses, but older rats experienced significant weakening of these protective systems, suggesting aging brains are more vulnerable to EMF damage.
Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH · 2008
Researchers exposed mice to static magnetic fields and 50 Hz electromagnetic fields (like those from power lines) continuously for 30 days to study health effects. The exposed mice lost weight, showed signs of liver stress including increased oxidative damage, and had significant changes in their blood cells and immune system markers. The study demonstrates that prolonged exposure to these common electromagnetic fields can disrupt normal body functions through oxidative stress.
Ahmed Z, Wieraszko A. · 2008
Researchers exposed brain tissue from the hippocampus (memory center) to pulsed magnetic fields for 30 minutes. The neurons became significantly more electrically active, firing more signals and changing how they communicate. This shows magnetic fields can directly alter brain cell function.
Hashish AH, El-Missiry MA, Abdelkader HI, Abou-Saleh RH. · 2008
Researchers exposed mice to magnetic fields and 50 Hz electromagnetic fields (the type from power lines) for 30 days to study health effects. The exposed mice lost weight and showed signs of liver stress, including increased oxidative damage (cellular damage from unstable molecules) and changes in blood chemistry. The study suggests that prolonged exposure to these common electromagnetic fields may disrupt the body's ability to protect itself from cellular damage.
Zhao TY, Zou SP, Knapp PE · 2007
Researchers exposed brain cells (neurons and astrocytes) to radiation from a working GSM cell phone for just 2 hours and found that genes involved in cell death pathways became more active. The effect occurred even when the phone was on standby mode, and neurons appeared more sensitive to the radiation than astrocytes (support cells in the brain). This suggests that even brief cell phone exposure can trigger cellular stress responses in brain tissue.
Peyman A, Holden SJ, Watts S, Perrott R, Gabriel C · 2007
Researchers measured how microwave radiation (50 MHz to 20 GHz) affects the electrical properties of brain and spinal cord tissues in pigs. They found that white matter and spinal cord tissues showed significant changes with age, while gray matter remained stable. This matters because understanding how different brain tissues respond to microwave frequencies helps us better predict potential health effects from wireless devices.
Vecchio F et al. · 2007
Italian researchers exposed 10 people to cell phone radiation for 45 minutes while measuring their brain waves with EEG technology. They found that the radiation altered how the left and right sides of the brain communicate with each other, specifically disrupting the synchronization of alpha brain waves that are important for information processing. This suggests that cell phone emissions don't just affect individual brain cells, but can interfere with the coordinated electrical activity between different brain regions.
Krause CM, Pesonen M, Haarala Bjornberg C, Hamalainen H. · 2007
Finnish researchers exposed 72 men to cell phone radiation at 902 MHz while they performed memory tasks, measuring brain wave activity through EEG recordings. The study found that phone radiation caused subtle changes in brain oscillations (electrical activity patterns) in the alpha frequency range, though these effects were inconsistent and didn't affect actual task performance. This adds to growing evidence that cell phone radiation can influence brain activity, even when users don't notice any immediate behavioral changes.
Dimbylow P. · 2007
Researchers created detailed computer models of pregnant women at different stages of pregnancy (8 to 38 weeks) to measure how radiofrequency radiation is absorbed by both the mother and developing baby. They found that current safety guidelines appear to provide adequate protection for the fetus, with radiation absorption levels staying within established limits across all pregnancy stages tested.
Jadidi M et al. · 2007
Researchers exposed rats to 50 Hz magnetic fields (household electricity frequency) immediately after learning a maze. An 8 milliTesla field for 20 minutes disrupted memory formation when applied right after learning, suggesting magnetic fields can interfere with how brains consolidate new memories.
Hirose H et al. · 2007
Researchers exposed human brain and lung cells to cell phone tower radiation at levels up to 10 times higher than public safety limits to test whether it triggers heat shock proteins (cellular stress markers). After continuous exposure for up to 48 hours, they found no increase in these stress proteins compared to unexposed cells. This suggests that cell phone tower radiation at these levels doesn't cause detectable cellular stress responses.
Hirose H et al. · 2007
Japanese researchers exposed human brain and lung cells to radiofrequency radiation at levels similar to cell tower emissions (2.1 GHz) for up to 48 hours. They found no changes in heat shock proteins (cellular stress markers that increase when cells are damaged) even at exposure levels 10 times higher than public safety limits. This suggests that cell tower-level RF radiation does not trigger detectable cellular stress responses in laboratory conditions.
Shirai T et al. · 2007
Researchers exposed young rats to cell phone-like radiation (1.95 GHz W-CDMA signals) for 2 years to see if it would promote brain tumor development in animals already given a cancer-causing chemical. The study found no significant increase in brain tumors from the radiation exposure at levels of 0.67 and 2.0 W/kg SAR. This suggests that chronic exposure to this type of cell phone radiation does not accelerate brain tumor formation in this animal model.
Chauhan V et al. · 2007
Canadian government researchers exposed three types of human cells to 1.9 GHz radiofrequency radiation (similar to cell phone signals) for 6 hours at power levels up to 10 W/kg. They measured multiple indicators of cellular stress including cell death, DNA damage, immune responses, and cell cycle disruption. The study found no detectable biological effects from the RF exposure at any power level tested.