Lippi G et al. · 2017
Italian researchers exposed blood samples from 16 healthy volunteers to smartphone radiation (900 MHz) for 30 minutes and found significant changes in platelet function. The exposed blood showed altered clotting behavior and increased platelet size compared to unexposed samples. This suggests that smartphone radiation can directly affect blood components involved in clotting and wound healing.
Altuntas G et al. · 2017
Researchers exposed 30 emergency physicians to cell phone radiation (900-1800 MHz) for 15 minutes and tested their attention and concentration using standardized cognitive tests. Surprisingly, doctors exposed to the radiation actually performed better on selective attention tasks compared to those holding phones that were turned off. The study suggests short-term cell phone radiation exposure may temporarily enhance certain cognitive functions rather than impair them.
Kim JH, Yu DH, Huh YH, Lee EH, Kim HG, Kim HR. · 2017
Researchers exposed mice to cell phone-level radiation (835 MHz) for 5 hours daily over 12 weeks and found significant brain changes. The radiation damaged the protective coating around brain cells (called myelin) and caused hyperactive behavior in the mice. This suggests that prolonged exposure to radiofrequency radiation at levels similar to heavy cell phone use may harm brain function and behavior.
Wang H et al. · 2017
Researchers exposed rats to microwave radiation at 2.856 GHz for six minutes daily over six weeks. Higher exposure levels caused lasting learning and memory problems, abnormal brain waves, and physical brain damage that persisted for months after exposure ended.
Wang K et al. · 2017
Scientists exposed mice to cell phone radiation (1.8 GHz) and found it improved memory performance at high exposure levels. The radiation physically changed brain cells and their electrical activity in memory regions, demonstrating that radiofrequency energy can directly alter how the brain functions.
Falone S et al. · 2017
Researchers exposed human neuroblastoma cells (a type of brain cancer cell) to 50 Hz magnetic fields at levels similar to those found near power lines. The magnetic field exposure made the cancer cells grow faster and become more resistant to cancer treatment drugs by activating the cells' natural defense systems. This suggests that power-frequency magnetic fields might make certain brain cancers more aggressive and harder to treat.
Giorgi G et al. · 2017
Researchers exposed human brain cells to power line magnetic fields alone and with cellular stress. While magnetic fields alone caused minor DNA changes, combining them with stress significantly altered DNA patterns that control genes. Most changes reversed, showing cells can recover.
Naarala J et al. · 2017
Scientists exposed human blood vessel cells and rat brain cells to combinations of Earth's magnetic field and power line magnetic fields. They found that horizontal power line fields caused different cellular effects than vertical ones. This suggests power line magnetic fields may interact with Earth's natural field to influence cell behavior.
Pooam M, Nakayama M, Nishigaki C, Miyata H · 2017
Scientists exposed immune cells to 50 Hz magnetic fields from power lines at levels found near electrical devices. The magnetic fields damaged cellular energy centers, increased harmful free radicals, and triggered stress responses. This suggests everyday magnetic field exposure may stress our immune systems.
Solek P et al. · 2017
Polish researchers exposed mouse sperm cells to electromagnetic fields at 2, 50, and 120 Hz frequencies for two hours. The exposure triggered cell death by damaging DNA and causing oxidative stress, potentially reducing healthy sperm and contributing to male fertility problems.
Zeng Y, Shen Y, Hong L, Chen Y, Shi X, Zeng Q, Yu P · 2017
Researchers exposed brain cells from the hippocampus (a memory center) to 50-Hz magnetic fields at 2 milliTesla for 8 hours daily and measured various biological effects. They found that repeated exposure reduced cell survival and increased harmful reactive oxygen species, but did not cause DNA damage or cell death. The study suggests that while these magnetic fields create cellular stress, they may not cause severe biological damage.
Zeng Y, Shen Y , Hong L, Chen Y, Shi X, Zeng Q, Yu P. · 2017
Researchers exposed brain cells important for memory to power-line frequency magnetic fields for eight hours daily. The exposure reduced cell health and increased cellular damage from free radicals, suggesting household electrical fields may stress brain cells without causing severe damage.
Kim JH, Kim HJ, Yu DH, Kweon HS, Huh YH, Kim HR. · 2017
Korean researchers exposed mice to cell phone-frequency radiation (835 MHz) for 5 hours daily and examined changes in brain cells. They found that this exposure significantly reduced the number of synaptic vesicles (tiny containers that store brain chemicals) and decreased levels of proteins needed for proper brain communication. These changes suggest that radiofrequency radiation may disrupt how brain cells communicate with each other.
Othman H, Ammari M, Sakly M, Abdelmelek H. · 2017
Researchers exposed pregnant rats to WiFi signals (2.45 GHz) for 2 hours daily throughout pregnancy and studied the offspring's development and behavior. They found that prenatal WiFi exposure caused developmental delays, anxiety-like behavior, motor problems, and brain oxidative stress in the offspring, with male rats showing more severe effects. The study suggests that WiFi exposure during pregnancy may harm brain development and behavior in offspring.
Bodera P et al. · 2017
Researchers exposed rats to cell phone radiation (1800 MHz) to study brain effects. They found no changes in healthy rats, but radiation combined with existing inflammation affected brain receptors involved in learning and memory, suggesting inflamed brains may be more vulnerable.
Chandel S, Kaur S, Singh HP, Batish DR, Kohli RK · 2017
Researchers exposed onion roots to 2100 MHz cell phone radiation for 1-4 hours and measured cellular damage markers. The radiation triggered oxidative stress, causing harmful molecules called reactive oxygen species to build up while forcing the plant cells to work harder to defend themselves. This demonstrates that radiofrequency radiation can disrupt normal cellular function even in plant tissue.
Mortazavi SMJ et al. · 2017
Researchers exposed 50 rats to 915 MHz radiofrequency radiation (similar to microwave ovens) at different power levels for 4 hours daily over one week, then tested whether this 'primed' their livers to better handle radiation damage. They found that low-power RF exposure increased protective antioxidant enzymes in the liver, creating an 'adaptive response' that helped protect against subsequent high-dose gamma radiation damage.
Shahin S, Singh SP, Chaturvedi CM. · 2017
Researchers exposed female mice to 1800 MHz mobile phone radiation (the frequency used by GSM networks) and found it significantly damaged their reproductive systems. The radiation increased harmful stress molecules in the brain, ovaries, and uterus while reducing fertility hormones and the number of healthy egg follicles. This suggests that mobile phone radiation may impair female fertility through cellular stress pathways.
Bayat M, Hemati S, Soleimani-Estyar R, Shahin-Jafari A. · 2017
Researchers exposed mice to 900 MHz cell phone radiation for 6 hours daily over several weeks, then infected them with a common fungal pathogen (Candida) to test their immune response. The radiation-exposed mice showed delayed wound healing, higher infection levels in their skin, and increased susceptibility to life-threatening systemic infections. This suggests that chronic exposure to cell phone frequencies may weaken the immune system's ability to fight off infections.
Mortazavi SMJ et al. · 2017
Iranian researchers exposed rats to 915 MHz radiofrequency radiation (similar to microwave ovens) for 4 hours daily over one week, then tested whether this 'primed' their liver cells to better handle a subsequent dose of gamma radiation. They found that low-power RF exposure increased antioxidant enzymes like glutathione, which helped protect liver tissue from oxidative damage when the rats were later exposed to harmful gamma radiation.
Villarini M et al. · 2017
Italian researchers exposed brain cancer cells (neuroblastoma) to 50 Hz magnetic fields and aluminum compounds, both separately and together, to see if they would cause DNA damage. After exposing the cells to magnetic field levels ranging from 0.01 to 1 mT for up to 5 hours, they found no DNA damage, no changes in cellular stress markers, or any harmful synergistic effects when the exposures were combined. This suggests that short-term exposure to these power-frequency magnetic fields, even in combination with aluminum, does not appear to damage DNA in these particular brain cell types.
Danese E et al. · 2017
Italian researchers exposed blood samples from 14 healthy volunteers to 900 MHz radiofrequency radiation from a commercial mobile phone for 30 minutes, then examined the cells for DNA damage markers called gamma-H2AX foci. They found no significant increase in DNA breaks or genetic damage compared to unexposed blood samples. This suggests that short-term mobile phone radiation exposure at typical frequencies may not cause immediate detectable DNA damage in human immune cells.
Park J, Kwon JH, Kim N, Song K · 2017
Researchers exposed brain cells to cell phone radiation (1950 MHz) for 2 hours daily over 3 days to see if it affected amyloid-beta processing, which is linked to Alzheimer's disease. They found no significant changes in the proteins that create these brain plaques. However, the researchers noted that longer-term exposure might produce different results than their short 3-day study.
Zhang JP et al. · 2017
Chinese researchers exposed adolescent mice to cell phone frequency radiation (1.8 GHz) for four weeks and tested their behavior and brain function. While the mice showed no changes in depression, memory, or brain structure, they did display increased anxiety-like behavior and had lower levels of key brain chemicals that regulate mood and brain activity. This suggests that radiofrequency exposure during adolescence may specifically affect anxiety responses in the developing brain.
Schwarze S et al. · 2016
Researchers studied how electromagnetic fields affect the magnetic compass navigation system in European robins, which these birds use during nighttime migration. They found that weak broadband electromagnetic fields (covering frequencies from 2 kHz to 9 MHz) completely disrupted the birds' ability to navigate using Earth's magnetic field, while stronger narrow-band fields at specific frequencies had no effect. This suggests that the complex mix of frequencies in our modern electromagnetic environment may be more harmful to biological systems than previously thought.