Dinčić M et al. · 2018
Researchers exposed rats to weak static magnetic fields (1 mT) for 50 days and examined brain enzyme activity. They found that magnetic field exposure significantly increased the activity of key brain enzymes involved in nerve communication and energy metabolism, while also causing oxidative stress damage. These enzymes play important roles in neurological diseases, suggesting that even weak magnetic fields can alter brain chemistry.
Bobkova NV et al. · 2018
Russian researchers exposed Alzheimer's mice to extremely weak magnetic fields for 4 hours daily over 10 days. The treatment reduced toxic brain plaques and improved memory in some mice, suggesting specific magnetic frequencies might help clear harmful proteins in early neurodegenerative diseases.
Yakymenko I et al. · 2018
Ukrainian researchers exposed developing quail embryos to low-level cell phone radiation (1800 MHz) at power levels typical of smartphone use. The radiation caused significant DNA damage, doubled the production of harmful molecules that damage cells, and nearly doubled embryo death rates. This demonstrates that even very low levels of wireless radiation can cause genetic damage in developing organisms.
Zhang J, Ding C, Meng X, Shang P · 2018
Researchers exposed bone cells to three different strengths of static magnetic fields to study how they affect osteoclast formation (cells that break down bone tissue). They found that very strong magnetic fields (16 Tesla) reduced osteoclast formation through increased nitric oxide production, while weaker fields (500 nT and 0.2 T) had the opposite effect. This suggests magnetic fields can influence bone health by altering cellular signaling pathways.
Sun Y, Shi Z, Wang Y, Tang C, Liao Y, Yang C, Cai P · 2018
Researchers exposed tiny worms (C. elegans) to 50-Hz magnetic fields at 3 milliTesla from egg to larval stage and found significant disruptions in cellular energy production and inflammation pathways. The magnetic field exposure caused oxidative stress (cellular damage from free radicals), impaired the worms' energy-producing machinery, and increased inflammatory compounds. This matters because it demonstrates that power-frequency magnetic fields can disrupt fundamental biological processes at the cellular level.
Sun L, Chen L, Bai L, Xia Y, Yang X, Jiang W, Sun W. · 2018
Researchers exposed human cells to power line frequency magnetic fields for 15 minutes and found they triggered harmful cellular changes linked to uncontrolled cell growth. The magnetic fields increased damaging molecules called reactive oxygen species, proving these everyday exposures can disrupt normal cell function.
Shokrollahi S, Ghanati F, Sajedi RH, Sharifi M · 2018
Researchers exposed soybean plants to magnetic fields for five hours daily over five days. The magnetic fields altered iron-containing proteins that help plants manage cellular stress, with different field strengths producing opposite effects. This demonstrates how magnetic fields can influence biological processes in living organisms.
Seif F, Bayatiani MR, Ansarihadipour H, Habibi G, Sadelaji S · 2018
Researchers exposed rats to magnetic fields from power lines for 2 hours daily over a month, finding significant blood damage and reduced antioxidant defenses. Myrtle plant extract prevented these harmful effects, suggesting magnetic field exposure causes oxidative stress but natural compounds may offer protection.
Mohammadi F, Ghanati F, Sharifi M, Chashmi NA · 2018
Researchers exposed tobacco plant cells to weak static magnetic fields (0.2 millitesla) for 24 hours and found the magnetic field disrupted the cells' normal cycle of growth and division. The exposure triggered a cascade of cellular stress responses, including increased production of reactive molecules and changes in key proteins that control when cells divide. This demonstrates that even relatively weak magnetic fields can interfere with fundamental cellular processes.
Maliszewska J et al. · 2018
Cockroaches exposed to 50 Hz magnetic fields (household power frequency) showed slower reactions to dangerous heat and developed cellular damage markers. The study suggests power-line frequency EMFs can impair nervous system responses to threats while causing biological stress.
Mahmoudinasab H, Saadat M. · 2018
Researchers exposed human brain cells (neuroblastoma cells) to 50 Hz electromagnetic fields at 0.5 mT for different time patterns and measured changes in antioxidant gene expression. They found that EMF exposure altered the activity of genes responsible for protecting cells from damage, with different exposure patterns producing different effects. This suggests that even brief EMF exposures can disrupt the cellular machinery that defends against oxidative stress.
Mahmoudinasab H, Saadat M. · 2018
Scientists tested whether 50 Hz magnetic fields affect how cancer drugs work on different cell types. The magnetic field protected nerve cells from chemotherapy toxicity by boosting antioxidants, but didn't protect breast cancer cells. This shows EMF can alter medical treatment effectiveness differently across cell types.
Hajipour Verdom B, Abdolmaleki P, Behmanesh M. · 2018
Researchers studied how static magnetic fields affect cancer treatment with doxorubicin (a common chemotherapy drug). They found that magnetic fields at 10 millitesla enhanced the drug's cancer-killing effects by increasing harmful molecules called reactive oxygen species (ROS) in cancer cells. This could potentially allow doctors to use lower doses of chemotherapy while maintaining effectiveness, reducing side effects for patients.
Glinka M et al. · 2018
Polish researchers exposed mouse skin cells (fibroblasts) to static magnetic fields ranging from 100 to 700 milliTesla to see how it affected their antioxidant defense systems. They found that the magnetic fields actually decreased the activity of two key antioxidant enzymes but didn't cause oxidative stress or damage the cells' energy production. This suggests static magnetic fields may have mild antioxidant-like effects rather than harmful oxidative effects.
Errico Provenzano A et al. · 2018
Researchers exposed leukemia cells to 50Hz magnetic fields (the same frequency as power lines) to see how it affected cell development. They found that the magnetic field exposure helped cancer cells mature into normal, healthy blood cells when combined with a standard treatment. This suggests that extremely low frequency magnetic fields might influence how cells develop and could potentially affect blood cell formation in the body.
Dinčić M et al. · 2018
Researchers exposed rats to static magnetic fields for 50 days and found significant changes in brain enzyme activity, including increased levels of enzymes that control nerve signaling and cellular energy. The magnetic field exposure also increased oxidative stress markers and decreased protective antioxidant activity in brain tissue. These findings suggest that chronic magnetic field exposure can alter fundamental brain chemistry in ways that might affect neurological health.
Consales C et al. · 2018
Researchers exposed brain cells to 50 Hz magnetic fields from power lines and found the fields altered protective gene activity and increased production of a protein linked to Parkinson's disease, suggesting power line frequencies may interfere with the brain's natural cellular defenses.
Coballase-Urrutia E et al. · 2018
Researchers exposed stressed laboratory animals to weak static magnetic fields (0.8 mT) for varying durations over 5 days and measured markers of cellular damage called oxidative stress. They found that magnetic field exposure significantly reduced harmful oxidative stress markers while boosting the body's natural antioxidant defenses. The protective effects were time-dependent, suggesting that controlled magnetic field exposure might help the body cope with stress-related cellular damage.
Talebnejad MR et al. · 2017
Researchers exposed 40 rabbits to cell phone-simulated microwave radiation at two distances (10 cm and 30 cm) for up to 3 days, then examined their retinas one week later. While they found no significant damage to the retina itself, they observed increased blood vessel congestion in the ciliary body (part of the eye that produces fluid) in rabbits exposed to higher radiation doses. The study suggests cell phone radiation may cause subtle eye changes even when major damage isn't apparent.
Su L, Wei X, Xu Z, Chen G · 2017
Researchers exposed three types of brain cells to cell phone radiation (1800 MHz) at high power levels for up to 24 hours to see if it would damage DNA or disrupt normal cell behavior. They found no evidence of DNA breaks, changes in cell growth, or other harmful effects even at radiation levels twice as high as current safety limits. The study suggests that this frequency of radiofrequency radiation may not directly damage brain cells in laboratory conditions.
Park J, Kwon JH, Kim N, Song K · 2017
Researchers exposed brain cells to cell phone radiation (1950 MHz) for 2 hours daily over 3 days to see if it affected amyloid-beta processing, which is linked to Alzheimer's disease. They found no significant changes in the proteins that create these brain plaques. However, the researchers noted that longer-term exposure might produce different results than their short 3-day study.
Haas AJ et al. · 2017
French researchers exposed nerve cells to 60.4 GHz millimeter wave radiation (the type used in 5G and some wireless systems) for 24 hours to see if it affected dopamine, a key brain chemical involved in movement and mood. They found no significant changes in dopamine production or processing, with only a slight increase in one dopamine byproduct that they attributed to heating effects. This suggests that millimeter wave exposure at these levels doesn't disrupt basic nerve cell function related to dopamine.
Ghatei N et al. · 2017
Researchers exposed pregnant mice and their offspring to cell phone radiation at 900 and 1800 MHz frequencies, then examined how this affected genes related to cell death and DNA repair in the brain's cerebellum. They found that the radiation did not trigger cell death pathways but did alter expression of genes involved in DNA repair. The authors concluded that while cell phone radiation may cause some cellular changes, the brain appears capable of repairing any damage through normal cellular mechanisms.
Danese E et al. · 2017
Italian researchers exposed blood samples from 14 healthy volunteers to 900 MHz radiofrequency radiation from a commercial mobile phone for 30 minutes, then examined the cells for DNA damage markers called gamma-H2AX foci. They found no significant increase in DNA breaks or genetic damage compared to unexposed blood samples. This suggests that short-term mobile phone radiation exposure at typical frequencies may not cause immediate detectable DNA damage in human immune cells.
Villarini M et al. · 2017
Italian researchers exposed brain cancer cells (neuroblastoma) to 50 Hz magnetic fields and aluminum compounds, both separately and together, to see if they would cause DNA damage. After exposing the cells to magnetic field levels ranging from 0.01 to 1 mT for up to 5 hours, they found no DNA damage, no changes in cellular stress markers, or any harmful synergistic effects when the exposures were combined. This suggests that short-term exposure to these power-frequency magnetic fields, even in combination with aluminum, does not appear to damage DNA in these particular brain cell types.