3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,359 studies (Human Studies)

Proteomic Analysis on the Alteration of Protein Expression in the Early-Stage Placental Villous Tissue of Electromagnetic Fields Associated With Cell Phone Exposure.

Luo Q, Jiang Y, Jin M, Xu J, Huang HF. · 2013

Researchers exposed pregnant women (about 50 days pregnant) to cell phone radiation for one hour and then analyzed protein changes in their placental tissue. They found significant alterations in 15 different proteins, including those involved in cell growth and nervous system development. This suggests that cell phone radiation may affect early embryonic development during the most vulnerable stage of pregnancy.

Replication of heart rate variability provocation study with 2.4-GHz cordless phone confirms original findings.

Havas M, Marrongelle J. · 2013

Researchers exposed 69 people to radiation from a 2.4-GHz cordless phone base station for 3-minute intervals and measured their heart rate variability (how the heart rhythm changes in response to stress). They found that 36% of participants showed some degree of sensitivity to the electromagnetic radiation, with their hearts responding as if experiencing stress. The study suggests that heart rate variability testing could help identify people who are electromagnetically sensitive.

STUDY OF VARIATIONS OF RADIOFREQUENCY POWER DENSITY FROM MOBILE PHONE BASE STATIONS WITH DISTANCE.

Ayinmode BO, Farai IP. · 2013

Researchers measured radiofrequency radiation levels at various distances from cell phone towers in Nigeria using calibrated equipment. They found the highest radiation levels occurred at 50-200 meters from the towers, with maximum readings of 2,972 µW/m². All measured levels were below international safety guidelines, suggesting people living near these towers face relatively low RF exposure.

Exposure to extremely low-frequency magnetic field restores spinal cord injury-induced tonic pain and its related neurotransmitter concentration in the brain.

Kumar S et al. · 2013

Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power lines) for 2 hours daily over 8 weeks. They found that this exposure helped restore normal pain responses and brain chemistry that had been disrupted by the spinal injuries. The magnetic field treatment appeared to normalize levels of key brain chemicals like serotonin and GABA that control pain perception.

Replication of heart rate variability provocation study with 2.4-GHz cordless phone confirms original findings.

Havas M, Marrongelle J · 2013

Researchers exposed 69 people to radiation from a 2.4-GHz cordless phone base station for 3-minute intervals and measured changes in heart rate variability (a measure of stress response). They found that 36% of participants showed measurable physiological stress responses to the EMF exposure, with 7% classified as moderately to very sensitive. The study suggests that some people may have an involuntary stress response to common household wireless devices.

Age-dependent effects of ELF-MF on oxidative stress in the brain of mongolian gerbils.

Selaković V, Rauš Balind S, Radenović L, Prolić Z, Janać B. · 2013

Scientists exposed gerbils to power line frequency magnetic fields for seven days. The exposure increased brain cell damage in all tested regions, with stronger effects in older animals and at higher field strengths. Younger brains recovered better after exposure ended, suggesting age affects vulnerability.

The effect of electromagnetic field on reactive oxygen species production in human neutrophils in vitro.

Poniedzialek B et al. · 2013

Polish researchers exposed human immune cells called neutrophils to extremely low frequency magnetic fields at three different strengths (10, 40, and 60 microTesla) to see how it affected their production of reactive oxygen species - molecules that can damage cells. They found that only magnetic fields tuned to a specific frequency that affects calcium ions could change how these immune cells behaved, with the effect depending on the field strength.

Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation.

Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S · 2013

Researchers exposed human bone marrow stem cells to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla for several days. They found that this EMF exposure triggered the stem cells to transform into nerve cells by activating specific cellular pathways and generating reactive oxygen species (ROS). This suggests that power-frequency magnetic fields can directly influence how our stem cells develop and differentiate.

Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells.

Calabrò E et al. · 2013

Italian researchers exposed human brain cells to a static magnetic field at 2.2 millitesla (below current safety limits) for 24 hours and found significant cellular damage. The magnetic field reduced the cells' energy production by 30%, increased harmful reactive oxygen species, and altered the structure of cellular proteins and fats. This demonstrates that even magnetic fields considered 'safe' by regulatory standards can disrupt normal brain cell function.

The influence of static magnetic field (50 mT) on development and motor behaviour of Tenebrio (Insecta, Coleoptera)

Todorović D et al. · 2013

Researchers exposed beetle pupae to a 50 milliTesla static magnetic field (about 1,000 times stronger than Earth's magnetic field) to study development and behavior. While the magnetic field didn't affect how long it took beetles to develop from pupae to adults, it did alter their movement patterns and activity levels once they became adults. This suggests that even non-radiofrequency magnetic fields can influence nervous system function in living organisms.

Age-Dependent Effects of ELF-MF on Oxidative Stress in the Brain of Mongolian Gerbils.

Selaković V, Rauš Balind S, Radenović L, Prolić Z, Janać B. · 2013

Researchers exposed young adult and middle-aged gerbils to 50 Hz magnetic fields at three different intensities for seven days, then measured oxidative stress markers in their brains. They found that magnetic field exposure increased oxidative stress in all brain regions tested, with stronger effects at higher field intensities and in older animals. The effects were still detectable three days after exposure ended, particularly in the middle-aged gerbils.

Effect of extremely low frequency magnetic field in prevention of spinal cord injury-induced osteoporosis.

Manjhi J, Kumar S, Behari J, Mathur R. · 2013

Researchers studied whether extremely low frequency magnetic fields could prevent bone loss in rats with spinal cord injuries. They exposed injured rats to 50 Hz magnetic fields (17.96 microTesla) for 2 hours daily over 8 weeks and found the treatment significantly prevented osteoporosis, maintaining bone density and mineral content compared to untreated injured rats. This suggests that specific magnetic field therapy might help preserve bone health after spinal cord injury.

Exposure to extremely low-frequency magnetic field restores spinal cord injury-induced tonic pain and its related neurotransmitter concentration in the brain

Kumar S et al. · 2013

Researchers exposed rats with spinal cord injuries to extremely low-frequency magnetic fields (50 Hz, similar to power line frequencies) for 2 hours daily over 8 weeks. The magnetic field exposure restored normal pain responses and corrected abnormal brain chemical levels that had developed after the spinal injury. This suggests that specific EMF exposures might have therapeutic potential for certain neurological conditions.

Effect of a single 30 min UMTS mobile phone‐like exposure on the thermal pain threshold of young healthy volunteers.

Vecsei Z, Csathó A, Thuróczy G, Hernádi I · 2013

Researchers exposed 20 young adults to cell phone-like radiation (UMTS signals) for 30 minutes while testing their sensitivity to heat-induced pain on their fingertips. They found that radiation exposure altered how the nervous system processes repeated painful stimuli, reducing the normal desensitization that occurs with repeated pain. This suggests that cell phone radiation can influence how our nervous system responds to pain signals.

Effect of bluetooth headset and mobile phone electromagnetic fields on the human auditory nerve

Mandalà M et al. · 2013

Researchers directly exposed the auditory nerves of 12 patients to both mobile phone radiation (900 MHz) and Bluetooth headset radiation (2.4 GHz) during surgery. They found that mobile phone EMFs significantly impaired nerve function by reducing signal strength and delaying response times, while Bluetooth EMFs caused no measurable changes. This suggests Bluetooth headsets may be a safer alternative for protecting auditory nerve health during phone calls.

Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

Deshmukh PS et al. · 2013

Researchers exposed rats to extremely low-level microwave radiation at cell phone frequencies (900, 1800, and 2450 MHz) for two hours daily over 30 days and found DNA damage in brain tissue. The exposure levels were about 1,000 times lower than current safety limits, yet still caused measurable genetic damage. This suggests that even very weak microwave radiation can harm brain cells at the DNA level.

Browse by Health Effect