Akdag MZ, Dasdag S, Cakir DU, Yokus B, Kizil G, Kizil M. · 2013
Researchers exposed rats to magnetic fields at levels considered safe by current standards for 10 months. The exposure significantly increased two markers of brain cell damage and aging, suggesting that even "safe" magnetic field levels may cause harmful oxidative stress in brain tissue over time.
Wang X et al. · 2013
Researchers exposed young adolescent mice to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily during a critical brain development period. Surprisingly, the exposed mice showed improved spatial learning and memory compared to unexposed mice when tested in maze tasks. This unexpected finding suggests that magnetic field exposure during adolescence might enhance certain cognitive abilities, though the implications for human brain development remain unclear.
Kitaoka K, Kitamura M, Aoi S, Shimizu N, Yoshizaki K. · 2013
Researchers exposed mice to extremely low frequency magnetic fields (ELF-MF) at 3 milliTesla for 200 hours and measured their behavior and stress hormone levels. The exposed mice showed significantly more depression and anxiety-like behaviors, along with elevated levels of the stress hormone corticosterone. This suggests that chronic exposure to strong magnetic fields may affect mental health and stress response systems.
He YL, Liu DD, Fang YJ, Zhan XQ, Yao JJ, Mei YA. · 2013
Chinese researchers exposed rat brain cells to power line-frequency electromagnetic fields for 10-60 minutes and found sodium channels increased activity by 30-125%. Since sodium channels control nerve signals, this suggests EMF exposure can directly alter how brain cells communicate with each other.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (120 Hz at 0.66 mT) and found that these fields increased blood vessel permeability in specific brain regions called circumventricular organs. The magnetic field exposure caused blood vessels to dilate and become more permeable to substances that normally can't cross into brain tissue. This suggests that ELF magnetic fields can compromise the brain's protective blood barrier system.
El Gohary MI, Salama AA, El Saeid AA, El Sayed TM, Kotb HS. · 2013
Researchers exposed rats to magnetic fields from power lines for 15 days and monitored brain activity. The magnetic fields altered brainwave patterns, particularly in the brain's right side. Caffeine appeared to modify these effects, suggesting everyday exposures may interact in unexpected ways.
Duan Y, Wang Z, Zhang H, He Y, Lu R, Zhang R, Sun G, Sun X. · 2013
Researchers exposed mice to 50 Hz magnetic fields (8 mT) for 28 days and found significant damage to learning and memory abilities, plus harmful oxidative stress in brain tissue. When mice were also given lotus seedpod extract, these negative effects were largely prevented. This suggests that extremely low frequency electromagnetic fields can damage brain function through oxidative stress mechanisms.
Deng Y, Zhang Y, Jia S, Liu J, Liu Y, Xu W, Liu L. · 2013
Researchers exposed mice to power line frequency magnetic fields for 8 weeks and found significant brain damage including memory loss, brain cell death, and cellular stress markers. While exposure levels exceeded typical household amounts, the study demonstrates these electromagnetic fields can directly harm brain tissue.
Balassa T et al. · 2013
Researchers exposed pregnant and newborn rats to 50 Hz magnetic fields (household electricity frequency) during brain development. The exposure altered how brain cells communicate, increasing electrical activity but impairing the brain's ability to form new memories and connections during critical developmental periods.
Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. · 2013
Chinese researchers exposed stem cells from rat bone marrow to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily over 12 days. The electromagnetic field exposure helped these stem cells transform into functional brain neurons that could form connections and transmit electrical signals. This suggests that power-frequency magnetic fields might have therapeutic potential for treating nervous system diseases through stem cell therapy.
Akdag MZ, Dasdag S, Cakir DU, Yokus B, Kizil G, Kizil M. · 2013
Researchers exposed rats to magnetic fields at levels considered safe for humans for 10 months. The fields didn't affect Alzheimer's-related proteins but significantly increased markers of cellular damage in brain tissue, suggesting long-term exposure may harm brain cells.
Wang H et al. · 2013
Researchers exposed rats to microwave radiation at 2.856 GHz for 6 minutes and tested their memory using a water maze. Rats exposed to higher power levels (10 and 50 mW/cm²) showed significant memory problems and brain damage, including damaged brain cells and disrupted connections between neurons. The study reveals that microwave exposure can impair the brain's ability to form memories by damaging the hippocampus, the brain region critical for learning.
Tong J, Chen S, Liu XM, Hao DM · 2013
Researchers exposed rats to 900 MHz cell phone radiation and measured brain activity in the hippocampus, which controls learning and memory. After just 10 minutes, normal brain cell firing decreased while abnormal electrical bursts increased, potentially impairing cognitive function.
Sharma A, Sisodia R, Bhatnagar D, Saxena VK · 2013
Researchers exposed mice to 10 GHz microwave radiation for two hours daily over 30 days, then tested their memory using a water maze. Exposed mice took significantly longer to learn and remember locations, with reduced brain protein levels, suggesting microwave exposure may impair learning and memory.
Pelletier A et al. · 2013
French researchers exposed young rats to cell phone-frequency radiation for five weeks and found disrupted sleep patterns, reduced blood flow to extremities, and increased daytime eating. These changes suggest that chronic radiofrequency exposure can interfere with the body's natural energy regulation systems.
Odacı E et al. · 2013
Researchers exposed pregnant rats to cell phone radiation (900 MHz) daily during late pregnancy. Their offspring showed spinal cord damage and increased motor activity compared to unexposed pups, suggesting prenatal EMF exposure can disrupt normal nervous system development.
Ntzouni MP et al. · 2013
Researchers exposed mice to cell phone radiation (GSM 1.8 GHz) for 90 minutes daily to test effects on memory. After weeks of exposure, the mice showed significant problems with both spatial memory (remembering locations) and non-spatial memory (recognizing objects). These memory problems persisted for two weeks after radiation stopped but fully recovered after a month, suggesting the brain can repair this type of damage over time.
Narayanan SN et al. · 2013
Young rats exposed to cell phone radiation (900 MHz) for 28 days showed increased anxiety behaviors in maze tests, avoiding open spaces and showing more stress signs like increased defecation. This suggests cell phone radiation may affect emotional development in young brains.
Hao D, Yang L, Chen S, Tong J, Tian Y, Su B, Wu S, Zeng Y · 2013
Researchers exposed rats to 916 MHz radiofrequency radiation (similar to cell phone signals) for 6 hours daily over 10 weeks and tested their ability to navigate a maze to find food. The exposed rats showed significantly impaired learning and memory during weeks 4-5, taking longer to complete the maze and making more errors, while brain recordings revealed disrupted neuron firing patterns throughout the study.
Haghani M, Shabani M, Moazzami K · 2013
Pregnant rats exposed to cell phone radiation (900 MHz) for six hours daily produced offspring with altered brain function. While the young rats behaved normally, their Purkinje neurons (cells controlling movement and learning) showed reduced electrical activity, suggesting prenatal exposure affects developing brain circuits.
Baş O et al. · 2013
Researchers exposed pregnant rats to cell phone frequency radiation (900 MHz) for one hour daily during a critical brain development period and examined their female offspring at 32 days old. They found significant loss of pyramidal neurons in the hippocampus, a brain region crucial for learning and memory. This suggests that prenatal EMF exposure during critical development windows may cause lasting brain damage that persists into later life.
Banaceur S, Banasr S, Sakly M, Abdelmelek H · 2013
Researchers exposed mice genetically programmed to develop Alzheimer's-like symptoms to WiFi signals (2.4 GHz) for 2 hours daily over one month. Surprisingly, they found the WiFi exposure actually improved cognitive performance in the Alzheimer's mice compared to unexposed controls. This unexpected result suggests radiofrequency radiation might have some protective effects on brain function in certain disease states.
Aboul Ezz HS, Khadrawy YA, Ahmed NA, Radwan NM, El Bakry MM · 2013
Researchers exposed rats to cell phone radiation (1800 MHz) for 24 hours daily over 1-4 months and measured key brain chemicals called neurotransmitters in four brain regions. The radiation significantly altered levels of dopamine, norepinephrine, and serotonin - chemicals that control mood, memory, learning, and stress responses. These changes persisted even after radiation exposure stopped, suggesting that chronic cell phone use may disrupt normal brain chemistry.
Poulletier de Gannes F et al. · 2012
French researchers exposed pregnant rats to Wi-Fi signals (2.45 GHz) for 2 hours daily during pregnancy to test whether this radiation could harm developing babies. They found no birth defects, developmental problems, or other harmful effects in the rat pups, even at the highest exposure level tested (4 W/kg). This study suggests that Wi-Fi exposure during pregnancy may not cause developmental harm at levels tested.
Liu YX et al. · 2012
Chinese researchers exposed brain cells (astrocytes) to cell phone radiation at 1950 MHz for up to 48 hours and found that prolonged exposure damaged the cells' power centers (mitochondria) and triggered programmed cell death. While the radiation didn't promote tumor formation, it caused significant cellular damage through a specific biological pathway involving proteins that control cell death. This suggests that continuous exposure to cell phone frequencies may harm healthy brain cells even when it doesn't directly cause cancer.