3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,014 studies (Rodent Studies)

Effect of Electromagnetic Pulses (EMP) on associative learning in mice and a preliminary study of mechanism.

Chen YB, Li J, Liu JY, Zeng LH, Wan Y, Li YR, Ren D, Guo GZ. · 2011

Researchers exposed mice to intense electromagnetic pulses (400,000 volts per meter) and found it significantly impaired their ability to learn new tasks for up to 24 hours. The exposure caused oxidative stress in brain tissue, damaging brain cells through increased harmful molecules and reduced protective antioxidants. When mice were given vitamin E beforehand, it protected them from these harmful effects.

MnSOD expression inhibited by electromagnetic pulse radiation in the rat testis

Zeng L et al. · 2011

Researchers exposed male rats to intense electromagnetic pulses (100,000 volts per meter) and examined effects on their reproductive systems. The study found that while sperm count and basic sperm health remained normal, the electromagnetic exposure damaged testicular tissue and disrupted important antioxidant enzymes that protect cells from damage. The findings suggest that electromagnetic pulses may harm male fertility by interfering with the body's natural defense systems against cellular damage.

Effect of selenium pre-treatment on plasma antioxidant vitamins A (retinol) and E (α-tocopherol) in static magnetic field-exposed rats

Ghodbane S et al. · 2011

Researchers exposed rats to static magnetic fields (128 mT) for one hour daily over five days and found significant depletion of antioxidant vitamins A and E in the blood, indicating oxidative stress. However, when rats were pre-treated with selenium supplements for 30 days, these harmful effects were prevented. This suggests that magnetic field exposure can overwhelm the body's natural antioxidant defenses, but proper nutrition may offer protection.

Extremely low frequency magnetic field induces oxidative stress in mouse cerebellum.

Chu LY et al. · 2011

Researchers exposed mice to 60 Hz magnetic fields (the same frequency as household electricity) for 3 hours and found significant oxidative stress in the cerebellum, the brain region controlling movement and coordination. The magnetic field exposure increased harmful molecules called free radicals while depleting protective antioxidants like vitamin C. This suggests that magnetic fields from power lines and electrical devices may damage brain cells through oxidative stress.

Exposure to extremely low frequency magnetic fields induces fos-related antigen-immunoreactivity via activation of dopaminergic D1 receptor.

Shin EJ, Nguyen XK, Nguyen TT, Pham DT, Kim HC. · 2011

Researchers exposed mice to magnetic fields from power lines for one hour daily over two weeks. The exposure caused hyperactivity and altered brain chemistry in areas controlling movement and reward, with changes lasting up to a year, suggesting these fields can permanently affect brain function.

Local exposure of the rat cortex to radiofrequency electromagnetic fields increases local cerebral blood flow along with temperature

Masuda H et al. · 2011

Researchers exposed rat brains to cell phone-frequency radiation and found it increased both brain temperature and blood flow. Higher radiation levels caused greater effects. This shows radiofrequency radiation triggers measurable biological changes in brain tissue, including the brain's natural response to heating.

Potential Protection of Green Tea Polyphenols Against 1800 MHz Electromagnetic Radiation-Induced Injury on Rat Cortical Neurons

Liu ML, Wen JQ, Fan YB. · 2011

Researchers exposed rat brain neurons to 1800 MHz cell phone radiation for 24 hours and found it caused significant cell death. However, when they treated the neurons with green tea polyphenols (natural compounds found in green tea), the protective compounds prevented much of the radiation-induced damage. This suggests that certain natural antioxidants might help protect brain cells from the harmful effects of cell phone radiation.

900-MHz microwave radiation promotes oxidation in rat brain

Kesari KK, Kumar S, Behari J. · 2011

Researchers exposed young rats to 900 MHz mobile phone radiation (the same frequency used by many cell phones) for 2 hours daily over 45 days. They found significant brain changes including increased oxidative stress (cellular damage from unstable molecules), decreased antioxidant protection, and elevated markers associated with cell death. The study suggests that prolonged mobile phone radiation exposure may harm brain tissue through oxidative damage.

Long-term electromagnetic field treatment enhances brain mitochondrial function of both Alzheimer's transgenic mice and normal mice: a mechanism for electromagnetic field-induced cognitive benefit?

Dragicevic N et al. · 2011

Researchers exposed mice to 918 MHz electromagnetic fields daily for one month. The treatment dramatically boosted brain cell energy production by 50-150% in Alzheimer's mice and improved function in normal mice, suggesting EMFs might protect against cognitive decline.

A study of neurotoxic biomarkers, c-fos and GFAP after acute exposure to GSM radiation at 900 MHz in the picrotoxin model of rat brains

Carballo-Quintás M et al. · 2011

Researchers exposed rats to cell phone-level 900 MHz radiation for 2 hours, then gave them a seizure-inducing drug called picrotoxin. They found that the combination of radiation and the drug caused significantly more brain cell activation and inflammatory responses than either exposure alone. This suggests that EMF radiation may make the brain more vulnerable to other toxic substances.

Effect of electromagnetic radiofrequency radiation on the rats' brain, liver and kidney cells measured by comet assay.

Trosić I et al. · 2011

Researchers exposed rats to cell phone radiation (915 MHz) for one hour daily over two weeks and measured DNA damage in brain, liver, and kidney cells using the comet assay. They found measurable DNA breaks in liver and kidney cells, with slight increases in brain cells compared to unexposed control animals. This suggests that repeated exposure to cell phone-type radiation can cause genetic damage at the cellular level.

Reproductive HealthNo Effects Found

Lack of adverse effects of whole-body exposure to a mobile telecommunication electromagnetic field on the rat fetus.

Takahashi S et al. · 2010

Researchers exposed pregnant rats to 2.14 GHz radiofrequency radiation (similar to cell tower signals) for 20 hours daily throughout pregnancy and nursing. They found no harmful effects on the mothers, their offspring, or the next generation, examining everything from growth and development to memory and reproductive function. This suggests that exposure levels similar to those from cell towers may not cause developmental problems in mammals.

Reproductive HealthNo Effects Found

Prenatal exposure to non-ionizing radiation: effects of WiFi signals on pregnancy outcome, peripheral B-cell compartment and antibody production.

Sambucci M et al. · 2010

Italian researchers exposed pregnant mice to WiFi signals (2.45 GHz) for 2 hours daily during pregnancy to study effects on birth outcomes and immune system development in offspring. They found no differences in pregnancy success, birth weight, or immune function (specifically B-cells that produce antibodies) when offspring were tested at 5 weeks and 26 weeks of age. This suggests that prenatal WiFi exposure at these levels may not significantly impact reproductive outcomes or immune system development.

Reproductive HealthNo Effects Found

The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis.

Lee HJ et al. · 2010

Researchers exposed male rats to cell phone radiation at 848.5 MHz for 12 weeks to study effects on sperm production and testicular health. They found no changes in sperm count, testicular tissue structure, or markers of cellular damage compared to unexposed rats. This suggests that exposure to this specific frequency and power level did not harm male reproductive function in rats.

DNA & Genetic DamageNo Effects Found

Is there any possible genotoxic effect in exfoliated bladder cells of rat under the exposure of 1800 MHz GSM-like modulated radio frequency radiation (RFR)?

Gurbuz N, Sirav B, Yuvaci HU, Turhan N, Coskun ZK, Seyhan N. · 2010

Turkish researchers exposed rats to 1800 MHz cell phone radiation (the same frequency used by GSM networks) for 20 minutes daily over a month to test for DNA damage in bladder cells. They found no increase in micronuclei (cellular markers of genetic damage) compared to unexposed control rats. This suggests that short-term exposure to GSM radiation at these levels did not cause detectable genetic damage to bladder cells.

Brain & Nervous SystemNo Effects Found

Microglial activation as a measure of stress in mouse brains exposed acutely (60 minutes) and long-term (2 years) to mobile telephone radiofrequency fields.

Finnie JW, Cai Z, Manavis J, Helps S, Blumbergs PC. · 2010

Researchers exposed mice to cell phone radiation at 900 MHz for either one hour or repeatedly over two years, then examined their brains for signs of microglial activation (immune cells that respond to brain stress or damage). They found no evidence that either short-term or long-term radiofrequency exposure activated these immune cells, even though the same cells responded strongly when brain tissue was physically damaged. This suggests that cell phone radiation at these levels may not trigger the brain's stress response mechanisms.

Oxidative StressNo Effects Found

A Study on the effects of 50 Hz magnetic fields on UV-induced radical reactions in murine fibroblasts.

Markkanen A, Naarala J, Juutilainen J · 2010

Finnish researchers tested whether 50 Hz magnetic fields (the type from power lines) could amplify DNA damage from UV radiation in mouse cells. They exposed cells to magnetic fields of 100-300 microTesla during or before UV exposure and measured cellular oxidative stress. The study found no evidence that magnetic fields increased UV-induced damage, contradicting their hypothesis about how magnetic fields might affect cellular chemistry.

Cellular EffectsNo Effects Found

Exposure to GSM RF fields does not affect calcium homeostasis in human endothelial cells, rat pheocromocytoma cells or rat hippocampal neurons.

O'Connor RP, Madison SD, Leveque P, Roderick HL, Bootman MD · 2010

Researchers exposed three types of cells (including human blood vessel cells and brain cells) to 900 MHz cell phone radiation at various power levels to see if it affected calcium levels inside the cells. Calcium is crucial for cell function and communication. They found no changes in calcium activity, even at radiation levels higher than typical phone exposure, suggesting that GSM cell phone signals don't disrupt this fundamental cellular process.

Browse by Health Effect