3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Showing all 3,138 studies

POSSIBLE IMPLEMENTATION OF GABAERGIC AND GLUTAMATERGIC SYSTEMS IN REALIZATION OF ANTIEPILEPTIC EFFECTS OF ACOUSTIC RANGE ELECTRO - MAGNETIC FIELDS.

Bukia N et al. · 2018

Researchers studied whether low-frequency electromagnetic fields could reduce seizures in epileptic rats by affecting brain chemical systems. They found that acoustic-range electromagnetic exposure decreased seizure activity by changing how neurotransmitters (brain chemicals like GABA and glutamate) function in the brain. This suggests electromagnetic fields might influence seizure disorders through specific brain chemistry pathways.

Measurement of the 100 MHz EMF radiation in vivo effects on zebrafish D. rerio embryonic development: A multidisciplinary study.

Piccinetti CC et al. · 2018

Researchers exposed zebrafish embryos to 100 MHz radiofrequency radiation (similar to FM radio frequencies) to study developmental effects. They found the radiation triggered oxidative stress, slowed growth, and activated cellular damage repair mechanisms during critical early development stages. This study demonstrates that EMF radiation can cause measurable biological effects beyond just heating tissue, providing important evidence for non-thermal health impacts.

Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice.

Pandey N, Giri S. · 2018

Researchers exposed male mice to 900 MHz radiofrequency radiation (similar to cell phone signals) for 6 hours daily over 35 days and found significant damage to sperm-producing cells, including DNA damage, reduced sperm count, and abnormal sperm shape. However, when mice also received melatonin supplements, these harmful effects were largely prevented or reversed. This suggests that RF radiation can impair male fertility, but antioxidants like melatonin may offer protection.

Radiofrequency radiation emitted from Wi-Fi (2.4 GHz) causes impaired insulin secretion and increased oxidative stress in rat pancreatic islets.

Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. · 2018

Researchers exposed rats to Wi-Fi radiation (2.4 GHz) for 4 hours daily over 45 days and found it significantly impaired the pancreas's ability to produce insulin while causing elevated blood sugar levels. The Wi-Fi exposure also increased harmful oxidative stress in pancreatic tissue and reduced the body's natural antioxidant defenses. This suggests that chronic Wi-Fi radiation exposure may interfere with blood sugar regulation, a critical function for metabolic health.

Exposure to radiation from single or combined radio frequencies provokes macrophage dysfunction in the RAW 264.7 cell line.

López-Furelos A et al. · 2018

Spanish researchers exposed immune cells (macrophages) to radio frequency radiation at cell phone frequencies (900 MHz and 2450 MHz) for up to 72 hours. They found that the radiation significantly impaired the cells' ability to fight infections and triggered inflammatory responses, with combined frequencies causing more damage than single frequencies. This suggests that everyday exposure to multiple wireless signals simultaneously may compromise immune function.

A histopathological and biochemical evaluation of oxidative injury in the sciatic nerves of male rats exposed to a continuous 900-megahertz electromagnetic field throughout all periods of adolescence.

Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. · 2018

Turkish researchers exposed adolescent male rats to 900 MHz electromagnetic fields (the frequency used by many cell phones) for one hour daily throughout their entire teenage development period. They found significant nerve damage in the sciatic nerve, including structural changes and increased oxidative stress markers that indicate cellular damage. This suggests that regular EMF exposure during critical developmental periods may harm the peripheral nervous system.

Evidence of oxidative stress after continuous exposure to Wi-Fi radiation in rat model.

Kamali K, Taravati A, Sayyadi S, Gharib FZ, Maftoon H. · 2018

Researchers exposed rats to Wi-Fi radiation (2.45 GHz) continuously for 10 weeks to study its effects on cellular defense systems. They found that Wi-Fi exposure significantly weakened the animals' antioxidant defenses, reducing the activity of key protective enzymes that normally protect cells from damage. This suggests that chronic Wi-Fi exposure may compromise the body's natural ability to defend against cellular stress.

Long term exposure to cell phone frequencies (900 and 1800 MHz) induces apoptosis, mitochondrial oxidative stress and TRPV1 channel activation in the hippocampus and dorsal root ganglion of rats.

Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. · 2018

Researchers exposed rats to cell phone frequencies (900 and 1800 MHz) for one hour daily, five days a week for an entire year, then examined brain tissue for damage. They found significant cellular damage including cell death, oxidative stress, and disrupted calcium channels in the hippocampus (memory center) and nerve tissues. The higher frequency (1800 MHz) caused more severe damage than the lower frequency, suggesting a dose-response relationship.

Effect of low-level 1800 MHz radiofrequency radiation on the rat sciatic nerve and the protective role of paricalcitol.

Comelekoglu U et al. · 2018

Turkish researchers exposed rats to 1800 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over four weeks and found significant damage to the sciatic nerve, which controls leg function. The nerve damage included slower electrical signals, increased oxidative stress, and physical deterioration of nerve fibers. However, when rats were also given paricalcitol (a vitamin D derivative), the nerve damage was partially prevented.

Alternating magnetic field enhances cytotoxicity of Compound C

Akimoto T et al. · 2018

Researchers exposed human brain cancer cells to alternating magnetic fields (280 kHz frequency) for 30 minutes while treating them with an anti-cancer compound called Compound C. The magnetic field exposure significantly enhanced the cancer-killing effects of the drug, causing more cancer cells to die and preventing them from multiplying. This suggests that magnetic fields might be used to make cancer treatments more effective while potentially allowing lower drug doses.

Extremely low frequency electromagnetic field exposure and restraint stress induce changes on the brain lipid profile of Wistar rats.

Martínez-Sámano J et al. · 2018

Researchers exposed rats to extremely low frequency electromagnetic fields (the type emitted by power lines and electrical wiring) for 21 days and found it triggered the same stress response as physical restraint stress. The EMF exposure altered brain chemistry, specifically changing fat composition and increasing oxidative damage (cellular wear and tear) in different brain regions.

Impact of fluoride and a static magnetic field on the gene expression that is associated with the antioxidant defense system of human fibroblasts.

Kimsa-Dudek M et al. · 2018

Researchers exposed human skin cells to fluoride and static magnetic fields to study gene activity. While fluoride damaged genes that protect cells from harm, magnetic field exposure restored normal gene function. This suggests magnetic fields might help protect cells against certain chemical toxins.

Electromagnetic radiation 2450 MHz exposure causes cognition deficit with mitochondrial dysfunction and activation of intrinsic pathway of apoptosis in rats.

Gupta SK, Mesharam MK, Krishnamurthy S. · 2018

Researchers exposed rats to 2450 MHz electromagnetic radiation (the frequency used by WiFi and microwave ovens) for one hour daily over 28 days and found significant cognitive impairment. The radiation damaged brain cell powerhouses called mitochondria, triggered cell death pathways, and disrupted the brain's chemical messaging system. This suggests that chronic exposure to common wireless frequencies may harm memory and thinking abilities through multiple biological mechanisms.

Assessment of exposure to radio frequency electromagnetic fields from smart utility meters in GB; part II) numerical assessment of induced SAR within the human body.

Qureshi MRA, Alfadhl Y, Chen X, Peyman A, Maslanyj M, Mann S · 2018

Researchers calculated how much radiofrequency energy from smart meters gets absorbed by human bodies. Children absorbed the most energy, especially when within 15 centimeters of 2.4 GHz meters. Though levels stayed below safety limits, the study confirms smart meters cause measurable energy absorption in tissue.

RKIP-Mediated NF-κB Signaling is involved in ELF-MF-mediated improvement in AD rat.

Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. · 2018

Chinese researchers exposed Alzheimer's rats to 50 Hz magnetic fields for 60 days and found improved memory and learning abilities. The exposure activated protective brain pathways that reduced inflammation and cognitive decline, suggesting electromagnetic fields might offer therapeutic potential for neurodegenerative diseases.

Effects of extremely low frequency electromagnetic fields on turkeys.

Laszlo AM et al. · 2018

Researchers exposed turkeys to 50 Hz magnetic fields (the type from power lines) for three weeks and found it disrupted their stress response system by reducing a key cellular signaling pathway called beta-adrenoceptor function. The birds' systems returned to normal after five weeks without exposure, suggesting the effects were reversible. This matters because it shows even relatively low-level magnetic field exposure can alter fundamental biological processes in living animals.

miRNA expression profile is altered differentially in the rat brain compared to blood after experimental exposure to 50 Hz and 1 mT electromagnetic field.

Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. · 2018

Researchers exposed rats to 50 Hz magnetic fields for 60 days and found significant changes in brain molecules that control gene expression. Young female rats showed the most dramatic effects, with altered patterns in both brain tissue and blood, suggesting chronic EMF exposure may disrupt normal brain function.

Modulation of rat synaptosomal ATPases and acetylcholinesterase activities induced by chronic exposure to the static magnetic field.

Dinčić M et al. · 2018

Researchers exposed rats to weak static magnetic fields (1 mT) for 50 days and examined brain enzyme activity. They found that magnetic field exposure significantly increased the activity of key brain enzymes involved in nerve communication and energy metabolism, while also causing oxidative stress damage. These enzymes play important roles in neurological diseases, suggesting that even weak magnetic fields can alter brain chemistry.

Fifty-Hertz Magnetic Field Affects the Epigenetic Modulation of the miR-34b/c in Neuronal Cells.

Consales C et al. · 2018

Researchers exposed human brain cells and mouse neurons to 50-Hz magnetic fields (the type from power lines) at 1 milliTesla and found significant changes in gene regulation. The magnetic fields altered microRNAs (small molecules that control gene expression) and increased production of alpha-synuclein, a protein linked to Parkinson's disease. This suggests that power-frequency magnetic fields may disrupt normal brain cell function through epigenetic changes that could predispose neurons to degeneration.

Effect of weak combined static and extremely low-frequency alternating magnetic fields on spatial memory and brain amyloid-β in two animal models of Alzheimer's disease.

Bobkova NV et al. · 2018

Russian researchers exposed Alzheimer's mice to extremely weak magnetic fields for 4 hours daily over 10 days. The treatment reduced toxic brain plaques and improved memory in some mice, suggesting specific magnetic frequencies might help clear harmful proteins in early neurodegenerative diseases.

Browse by Health Effect