Bukia N et al. · 2018
Researchers studied whether low-frequency electromagnetic fields could reduce seizures in epileptic rats by affecting brain chemical systems. They found that acoustic-range electromagnetic exposure decreased seizure activity by changing how neurotransmitters (brain chemicals like GABA and glutamate) function in the brain. This suggests electromagnetic fields might influence seizure disorders through specific brain chemistry pathways.
Piccinetti CC et al. · 2018
Researchers exposed zebrafish embryos to 100 MHz radiofrequency radiation (similar to FM radio frequencies) to study developmental effects. They found the radiation triggered oxidative stress, slowed growth, and activated cellular damage repair mechanisms during critical early development stages. This study demonstrates that EMF radiation can cause measurable biological effects beyond just heating tissue, providing important evidence for non-thermal health impacts.
Pandey N, Giri S. · 2018
Researchers exposed male mice to 900 MHz radiofrequency radiation (similar to cell phone signals) for 6 hours daily over 35 days and found significant damage to sperm-producing cells, including DNA damage, reduced sperm count, and abnormal sperm shape. However, when mice also received melatonin supplements, these harmful effects were largely prevented or reversed. This suggests that RF radiation can impair male fertility, but antioxidants like melatonin may offer protection.
Masoumi A, Karbalaei N, Mortazavi SMJ, Shabani M. · 2018
Researchers exposed rats to Wi-Fi radiation (2.4 GHz) for 4 hours daily over 45 days and found it significantly impaired the pancreas's ability to produce insulin while causing elevated blood sugar levels. The Wi-Fi exposure also increased harmful oxidative stress in pancreatic tissue and reduced the body's natural antioxidant defenses. This suggests that chronic Wi-Fi radiation exposure may interfere with blood sugar regulation, a critical function for metabolic health.
López-Furelos A et al. · 2018
Spanish researchers exposed immune cells (macrophages) to radio frequency radiation at cell phone frequencies (900 MHz and 2450 MHz) for up to 72 hours. They found that the radiation significantly impaired the cells' ability to fight infections and triggered inflammatory responses, with combined frequencies causing more damage than single frequencies. This suggests that everyday exposure to multiple wireless signals simultaneously may compromise immune function.
Kerimoğlu G, Güney C, Ersöz Ş, Odacı E. · 2018
Turkish researchers exposed adolescent male rats to 900 MHz electromagnetic fields (the frequency used by many cell phones) for one hour daily throughout their entire teenage development period. They found significant nerve damage in the sciatic nerve, including structural changes and increased oxidative stress markers that indicate cellular damage. This suggests that regular EMF exposure during critical developmental periods may harm the peripheral nervous system.
Kamali K, Taravati A, Sayyadi S, Gharib FZ, Maftoon H. · 2018
Researchers exposed rats to Wi-Fi radiation (2.45 GHz) continuously for 10 weeks to study its effects on cellular defense systems. They found that Wi-Fi exposure significantly weakened the animals' antioxidant defenses, reducing the activity of key protective enzymes that normally protect cells from damage. This suggests that chronic Wi-Fi exposure may compromise the body's natural ability to defend against cellular stress.
Ertilav K, Uslusoy F, Ataizi S, Nazıroğlu M. · 2018
Researchers exposed rats to cell phone frequencies (900 and 1800 MHz) for one hour daily, five days a week for an entire year, then examined brain tissue for damage. They found significant cellular damage including cell death, oxidative stress, and disrupted calcium channels in the hippocampus (memory center) and nerve tissues. The higher frequency (1800 MHz) caused more severe damage than the lower frequency, suggesting a dose-response relationship.
Comelekoglu U et al. · 2018
Turkish researchers exposed rats to 1800 MHz radiofrequency radiation (the same frequency used by many cell phones) for one hour daily over four weeks and found significant damage to the sciatic nerve, which controls leg function. The nerve damage included slower electrical signals, increased oxidative stress, and physical deterioration of nerve fibers. However, when rats were also given paricalcitol (a vitamin D derivative), the nerve damage was partially prevented.
Bahreyni Toossi MH et al. · 2018
Researchers exposed pregnant mice to cell phone radiation for 2 hours daily, then measured cellular damage in mothers and newborns. Both showed increased oxidative stress (cellular damage linked to aging and disease) in brain, heart, and liver tissues, suggesting pregnancy EMF exposure may harm both mother and developing baby.
Akimoto T et al. · 2018
Researchers exposed human brain cancer cells to alternating magnetic fields (280 kHz frequency) for 30 minutes while treating them with an anti-cancer compound called Compound C. The magnetic field exposure significantly enhanced the cancer-killing effects of the drug, causing more cancer cells to die and preventing them from multiplying. This suggests that magnetic fields might be used to make cancer treatments more effective while potentially allowing lower drug doses.
Martínez-Sámano J et al. · 2018
Researchers exposed rats to extremely low frequency electromagnetic fields (the type emitted by power lines and electrical wiring) for 21 days and found it triggered the same stress response as physical restraint stress. The EMF exposure altered brain chemistry, specifically changing fat composition and increasing oxidative damage (cellular wear and tear) in different brain regions.
Kimsa-Dudek M et al. · 2018
Researchers exposed human skin cells to fluoride and static magnetic fields to study gene activity. While fluoride damaged genes that protect cells from harm, magnetic field exposure restored normal gene function. This suggests magnetic fields might help protect cells against certain chemical toxins.
Gupta SK, Mesharam MK, Krishnamurthy S. · 2018
Researchers exposed rats to 2450 MHz electromagnetic radiation (the frequency used by WiFi and microwave ovens) for one hour daily over 28 days and found significant cognitive impairment. The radiation damaged brain cell powerhouses called mitochondria, triggered cell death pathways, and disrupted the brain's chemical messaging system. This suggests that chronic exposure to common wireless frequencies may harm memory and thinking abilities through multiple biological mechanisms.
Ruigrok HJ et al. · 2018
Researchers tested whether 1800 MHz radiofrequency radiation from wireless devices could activate heat-sensitive cell channels through non-thermal effects. They found RF radiation only activated these channels when it produced actual heating, providing no evidence for non-thermal biological effects at the cellular level.
Qureshi MRA, Alfadhl Y, Chen X, Peyman A, Maslanyj M, Mann S · 2018
Researchers calculated how much radiofrequency energy from smart meters gets absorbed by human bodies. Children absorbed the most energy, especially when within 15 centimeters of 2.4 GHz meters. Though levels stayed below safety limits, the study confirms smart meters cause measurable energy absorption in tissue.
Lasalvia M et al. · 2018
Researchers exposed human immune cells to 1.8 GHz cell phone radiation for up to 20 hours. The radiation caused cell deformation, DNA changes, and disrupted cellular energy production. These findings raise safety concerns about long-term EMF exposure effects on human health.
Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. · 2018
Chinese researchers exposed Alzheimer's rats to 50 Hz magnetic fields for 60 days and found improved memory and learning abilities. The exposure activated protective brain pathways that reduced inflammation and cognitive decline, suggesting electromagnetic fields might offer therapeutic potential for neurodegenerative diseases.
Laszlo AM et al. · 2018
Researchers exposed turkeys to 50 Hz magnetic fields (the type from power lines) for three weeks and found it disrupted their stress response system by reducing a key cellular signaling pathway called beta-adrenoceptor function. The birds' systems returned to normal after five weeks without exposure, suggesting the effects were reversible. This matters because it shows even relatively low-level magnetic field exposure can alter fundamental biological processes in living animals.
Kazemi M et al. · 2018
Researchers exposed four male rhesus monkeys to 12 Hz magnetic fields for four hours daily over 30 days. The monkeys showed significantly improved visual working memory and increased brain chemicals linked to learning. This suggests certain EMF frequencies might enhance cognitive function.
Hong I et al. · 2018
Researchers exposed rat brain cells to weak magnetic fields at 1 Hz and 10 Hz frequencies, finding both altered cellular energy processes, with 1 Hz having stronger effects. This demonstrates that magnetic fields can change how brain cells function biochemically, providing insights into magnetic stimulation's neural effects.
Erdal ME, Yılmaz SG, Gürgül S, Uzun C, Derici D, Erdal N. · 2018
Researchers exposed rats to 50 Hz magnetic fields for 60 days and found significant changes in brain molecules that control gene expression. Young female rats showed the most dramatic effects, with altered patterns in both brain tissue and blood, suggesting chronic EMF exposure may disrupt normal brain function.
Dinčić M et al. · 2018
Researchers exposed rats to weak static magnetic fields (1 mT) for 50 days and examined brain enzyme activity. They found that magnetic field exposure significantly increased the activity of key brain enzymes involved in nerve communication and energy metabolism, while also causing oxidative stress damage. These enzymes play important roles in neurological diseases, suggesting that even weak magnetic fields can alter brain chemistry.
Consales C et al. · 2018
Researchers exposed human brain cells and mouse neurons to 50-Hz magnetic fields (the type from power lines) at 1 milliTesla and found significant changes in gene regulation. The magnetic fields altered microRNAs (small molecules that control gene expression) and increased production of alpha-synuclein, a protein linked to Parkinson's disease. This suggests that power-frequency magnetic fields may disrupt normal brain cell function through epigenetic changes that could predispose neurons to degeneration.
Bobkova NV et al. · 2018
Russian researchers exposed Alzheimer's mice to extremely weak magnetic fields for 4 hours daily over 10 days. The treatment reduced toxic brain plaques and improved memory in some mice, suggesting specific magnetic frequencies might help clear harmful proteins in early neurodegenerative diseases.