Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B · 2014
Researchers exposed gerbils to power line frequency magnetic fields after stroke-like brain damage. The magnetic field exposure helped reduce brain oxidative stress caused by the stroke, with stress levels returning nearly to normal by day 14, suggesting potential protective effects against brain injury.
Pandir D, Sahingoz R · 2014
Researchers exposed Mediterranean flour moth larvae to extremely strong magnetic fields (1.4 Tesla at 50 Hz) for periods ranging from 3 to 72 hours and found significant DNA damage and oxidative stress. The longer the exposure, the more severe the genetic damage and cellular stress became, as measured by multiple biochemical markers. This study demonstrates that magnetic field exposure can cause measurable biological harm at the cellular level.
Manikonda PK et al. · 2014
Researchers exposed young rats to 50 Hz magnetic fields from power lines for 90 days and found significant brain damage from oxidative stress. Higher magnetic field levels caused more harm across multiple brain regions, including areas controlling memory and movement, suggesting potential neurological effects.
Luukkonen J, Liimatainen A, Juutilainen J, Naarala J · 2014
Finnish researchers exposed human brain cells to 50Hz magnetic fields from power lines for 24 hours. The exposure caused lasting genetic damage and cellular stress that persisted for up to 15 days, suggesting common household magnetic fields can trigger long-term harmful effects in cells.
Kantar Gok D et al. · 2014
Researchers exposed rats to 50 Hz electric fields (like those from power lines) for up to four weeks. High-intensity exposure significantly reduced brain responses that help detect sound changes, while increasing brain damage markers. This suggests electric field exposure may impair auditory processing abilities.
Ghodbane S1 et al. · 2014
Researchers exposed rats to static magnetic fields (128 mT) for one hour daily over five days and found the exposure disrupted glucose metabolism, increasing blood sugar levels by 21% and reducing liver energy storage. However, vitamin E supplementation prevented these metabolic disruptions, suggesting antioxidants may protect against magnetic field-induced metabolic damage.
Deng B et al. · 2014
Chinese researchers exposed rats to electromagnetic pulse (EMP) radiation and found it caused brain damage, including neuronal death and learning problems. When they treated the rats with sevoflurane (an anesthetic gas), it protected against this brain damage by reducing oxidative stress and preventing brain cell death. This suggests that electromagnetic pulses can harm brain function, but also that protective treatments might be possible.
Ciejka E et al. · 2014
Polish researchers exposed rats to 40 Hz magnetic fields at 7 mT (similar to some therapeutic magnetic devices) for either 30 or 60 minutes daily over two weeks. They found that both exposure durations significantly increased glutathione levels in skeletal muscle tissue compared to unexposed controls. Glutathione is the body's master antioxidant, so this suggests the magnetic fields triggered the muscles' natural defense systems against cellular damage.
Chen Y, Hong L, Zeng Y, Shen Y, Zeng Q. · 2014
Researchers exposed mouse embryonic cells to 50 Hz magnetic fields (the type from power lines) at 2 milliTesla for various time periods. They found that 6-hour exposures triggered autophagy, a cellular cleanup process, through increased reactive oxygen species (cellular stress molecules). This suggests that power frequency magnetic fields can alter fundamental cellular processes even at the cellular level.
Reale M et al. · 2014
Researchers exposed human brain cells to 50 Hz electromagnetic fields (the type from power lines) for up to 24 hours and found the cells produced more harmful molecules called free radicals and nitric oxide. While the cells initially tried to defend themselves by boosting antioxidant activity, this protection failed when the cells faced additional stress, leading to cellular damage that could contribute to brain diseases like Alzheimer's.
Rauš Balind S, Selaković V, Radenović L, Prolić Z, Janać B. · 2014
Researchers exposed stroke-damaged gerbils to power line frequency magnetic fields for seven days. While initially increasing brain stress, the magnetic field exposure ultimately protected against stroke damage, returning brain stress markers to normal levels by day fourteen, suggesting potential therapeutic benefits.
Manikonda PK et al. · 2014
Researchers exposed young rats to extremely low frequency magnetic fields (the type emitted by power lines and household appliances) for 90 days and found significant oxidative stress damage throughout their brains. The damage was dose-dependent, meaning higher magnetic field levels caused more harm, and affected different brain regions differently. This suggests that chronic exposure to these common magnetic fields may disrupt normal brain function by overwhelming the brain's natural defense systems.
Kantar Gok D et al. · 2014
Researchers exposed rats to electric fields like those near power lines for up to four weeks. Higher intensity, longer exposures significantly impaired the brain's ability to detect sound changes, a function essential for learning and attention, while causing oxidative brain damage.
Giorgi G et al. · 2014
Italian researchers exposed human brain cells to power line frequency magnetic fields (50 Hz) while simultaneously stressing them with hydrogen peroxide. Over 72 hours, the magnetic field exposure did not increase DNA damage beyond what the chemical stress alone caused, suggesting power-frequency fields may not worsen cellular damage.
Qin F, Yuan H, Nie J, Cao Y, Tong J · 2014
Researchers exposed mice to cell phone radiation (1800 MHz) for 30 days and found that 2-hour daily exposures significantly impaired learning and memory performance. The study also tested whether nano-selenium supplements could protect against these cognitive effects, finding that the supplement did help preserve brain function in radiation-exposed mice.
Narayanan SN, Kumar RS, Kedage V, Nalini K, Nayak S, Bhat PG · 2014
Researchers exposed adolescent rats to cell phone radiation (900 MHz) for one hour daily over four weeks and found significant oxidative stress throughout the brain. The radiation increased harmful cellular damage markers and decreased protective antioxidants in key brain regions including the hippocampus, amygdala, and cerebellum. These biochemical changes coincided with altered behavioral performance, suggesting that cell phone radiation may impair brain function through oxidative damage.
Motawi TK, Darwish HA, Moustafa YM, Labib MM. · 2014
Scientists exposed rats to mobile phone radiation (900 MHz) for 2 hours daily over 60 days. Both young and adult rats showed significant brain damage, including cellular stress and activated cell death pathways. Young rats were particularly affected, suggesting mobile phone exposure may harm developing brains.
Hu S et al. · 2014
Researchers exposed rats to high-power microwave radiation for 15 minutes and found it caused memory problems and brain damage. However, when rats were given a dietary supplement called Kang-fu-ling for two weeks, it protected their brains from this microwave-induced damage by reducing harmful oxidative stress (cellular damage from free radicals). This suggests certain antioxidant compounds might help protect the brain from microwave radiation effects.
Ghazizadeh V, Nazıroğlu M · 2014
Researchers exposed brain and nerve cells from epileptic rats to Wi-Fi radiation (2.45 GHz) for one hour and found it triggered additional calcium influx and cell death beyond what epilepsy alone caused. The Wi-Fi exposure activated specific calcium channels (TRPV1) that allowed harmful calcium to flood into neurons, leading to oxidative stress and programmed cell death. This suggests Wi-Fi radiation may worsen neurological conditions by overwhelming brain cells with calcium.
Cetin H et al. · 2014
Researchers exposed pregnant rats and their offspring to mobile phone radiation (900 and 1800 MHz) for 60 minutes daily, then measured oxidative stress markers in the brain and liver. The study found that EMF exposure decreased protective antioxidants in the liver while increasing oxidative stress markers in the brain, particularly affecting selenium levels. This suggests that mobile phone radiation can overwhelm the body's natural antioxidant defenses during critical developmental periods.
Akbari A, Jelodar G, Nazifi S · 2014
Researchers exposed rats to radiofrequency waves from a cell tower antenna model for 4 hours daily over 45 days and found it caused oxidative stress in brain tissue. The radiation damaged the brain's natural antioxidant defenses and increased harmful compounds called free radicals. However, when rats were given vitamin C supplements, this damage was significantly reduced, suggesting antioxidants may help protect against RF radiation effects.
Khalil AM, Abu Khadra KM, Aljaberi AM, Gagaa MH, Issa HS. · 2013
Researchers tested saliva samples from people before, during, and after 15 and 30-minute cell phone calls to measure oxidative stress markers (chemicals that indicate cellular damage). They found no significant changes in these stress markers, suggesting that short-term phone use doesn't trigger measurable oxidative damage in saliva. This challenges the theory that cell phone radiation causes immediate cellular stress through oxidative pathways.
Furtado-Filho OV et al. · 2013
Brazilian researchers exposed young rats to 950 MHz radiofrequency radiation (similar to older cell phone frequencies) for 30 minutes daily from birth through 30 days of age. While the study found no oxidative stress or DNA damage in most age groups, 30-day-old rats showed genetic damage in liver cells, and newborns had altered fatty acid levels and reduced antioxidant enzyme production.
Aït-Aïssa S et al. · 2013
French researchers exposed pregnant rats and their offspring to WiFi signals (2.4 GHz) from pregnancy through 5 weeks after birth, then examined their brains for signs of cellular stress and damage. They found no differences in stress markers between WiFi-exposed and unexposed rat pups, even at exposure levels up to 4 W/kg. The study suggests that WiFi exposure during critical developmental periods may not cause detectable brain damage in young rats.
Kang KA et al. · 2013
Researchers exposed neuronal brain cells to combined cell phone radiation (CDMA and WCDMA signals) for 2 hours to see if it would increase reactive oxygen species (ROS), which are harmful molecules that can damage cells. The study found no increase in ROS levels from the radiation exposure, even when combined with chemicals known to cause oxidative stress. This suggests the specific radiation levels tested did not trigger cellular damage in these lab-grown brain cells.