3,138 Studies Reviewed. 77.4% Found Biological Effects. The Evidence is Clear.

EMF Research Studies

Browse 3,138 peer-reviewed studies on electromagnetic field health effects from the BioInitiative Report database.

Filter Studies

Clear all filters

Showing 1,644 studies in Brain & Nervous System

Subacute exposure to 50-Hz electromagnetic fields affect prenatal and neonatal mice’s motor coordination.

Sakhnini L, Al Ali H, Al Qassab N, Al Arab E, Kamal A. · 2012

Researchers exposed pregnant mice to power line frequency electromagnetic fields for seven days, then tested their babies' motor skills. Mice exposed in the womb showed significant learning deficits compared to unexposed mice, suggesting developing brains are particularly vulnerable to EMF during pregnancy.

Assessment of genotoxic and cytotoxic hazards in brain and bone marrow cells of newborn rats exposed to extremely low-frequency magnetic field.

Rageh MM, El-Gebaly RH, El-Bialy NS. · 2012

Researchers exposed newborn rats to magnetic fields at 0.5 milliTesla (similar to levels near some power lines) for 30 days and found significant DNA damage in brain cells and bone marrow. The study also detected a four-fold increase in cellular abnormalities and signs of oxidative stress (cellular damage from harmful molecules). This suggests that developing organisms may be particularly vulnerable to magnetic field exposure during critical growth periods.

Extremely low frequency magnetic field induced changes in motor behaviour of gerbils submitted to global cerebral ischemia.

Rauš S, Selaković V, Radenović L, Prolić Z, Janać B. · 2012

Serbian researchers exposed gerbils with induced stroke-like brain damage to 50 Hz magnetic fields (the same frequency as power lines) for seven days. The magnetic field exposure significantly reduced the hyperactive behavior that typically follows brain injury from lack of blood flow. This suggests that extremely low frequency magnetic fields may influence brain recovery processes after stroke or similar injuries.

The 50 Hz (10 mT) sinusoidal magnetic field: effects on stress-related behavior of rats.

Korpinar MA, Kalkan MT, Tuncel H. · 2012

Researchers exposed rats to 50 Hz magnetic fields (the same frequency as power lines) at 10 milliTesla for 21 days and measured their behavior using standard anxiety tests. The exposed rats showed significantly more anxiety and stress-related behaviors, spending much less time in open, exposed areas compared to unexposed rats. This suggests that prolonged exposure to power-frequency magnetic fields may increase anxiety levels.

Neurodevelopmental anomalies of the hippocampus in rats exposed to weak intensity complex magnetic fields throughout gestation.

Fournier NM, Mach QH, Whissell PD, Persinger MA. · 2012

Researchers exposed pregnant rats to extremely weak magnetic fields (similar to power line levels) throughout pregnancy and found that specific exposure levels caused permanent brain damage in the offspring. The baby rats exposed to low-intensity fields (30-50 nT) developed smaller hippocampus regions and showed impaired learning abilities as adults. Interestingly, both weaker and stronger magnetic field exposures didn't cause these problems, suggesting a narrow 'danger zone' of exposure intensity.

Exposure to ELF- magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord

Das S, Kumar S, Jain S, Avelev VD, Mathur R. · 2012

Researchers exposed rats with severed spinal cords to extremely low frequency magnetic fields (50 Hz at 17.96 microTesla) for 2 hours daily over 6 weeks. The magnetic field exposure significantly accelerated recovery of movement, sensation, and bladder control compared to untreated injured rats. This suggests that specific EMF exposures might actually promote nerve healing and functional recovery after spinal cord injuries.

Deficits in water maze performance and oxidative stress in the hippocampus and striatum induced by extremely low frequency magnetic field exposure.

Cui Y, Ge Z, Rizak JD, Zhai C, Zhou Z, Gong S, Che Y. · 2012

Researchers exposed mice to extremely low frequency magnetic fields (the type emitted by power lines and electrical devices) for 4 hours daily and tested their learning abilities. The exposed mice showed significant impairments in both spatial memory and habit formation, along with increased oxidative stress (cellular damage) in key brain regions responsible for learning and memory.

The effect of different strengths of extremely low-frequency electric fields on antioxidant status, lipid peroxidation, and visual evoked potentials.

Akpinar D, Ozturk N, Ozen S, Agar A, Yargicoglu P. · 2012

Researchers exposed rats to extremely low-frequency electric fields (the type generated by power lines) for one hour daily over two weeks. The exposed animals showed significant damage to brain and retinal tissue, including increased oxidative stress (cellular damage from free radicals) and disrupted visual processing. This suggests that even brief daily exposures to electric fields can harm the nervous system and vision.

Exposure to 2.45 GHz electromagnetic fields elicits an HSP-related stress response in rat hippocampus.

Yang XS, He GL, Hao YT, Xiao Y, Chen CH, Zhang GB, Yu ZP. · 2012

Researchers exposed rats to WiFi-frequency radiation (2.45 GHz) for 20 minutes and found it triggered stress responses in brain cells. The radiation caused neurons in the hippocampus to produce heat shock proteins, indicating cellular damage in the brain region responsible for memory and learning.

Assessment of intermittent UMTS electromagnetic field effects on blood circulation in the human auditory region using a near-infrared system

Spichtig S, Scholkmann F, Chin L, Lehmann H, Wolf M · 2012

Swiss researchers measured brain blood flow in 16 people exposed to 3G cell phone radiation. Even low-level exposure increased blood oxygen levels within 80 seconds, while higher levels also raised heart rate. The changes were small but measurable, showing cell phones can alter brain circulation.

The effect of melatonin on body mass and behaviour of rats during an exposure to microwave radiation from mobile phone.

Sokolovic D et al. · 2012

Researchers exposed rats to mobile phone radiation for 4 hours daily over 60 days and found the animals lost significant body weight and developed anxiety-like behaviors including agitation and irritability. When rats were given melatonin (a natural hormone) along with the radiation exposure, these negative effects were largely prevented, suggesting melatonin may offer protective benefits against microwave radiation damage.

Sleep EEG alterations: effects of pulsed magnetic fields versus pulse‐modulated radio frequency electromagnetic fields

Schmid MR et al. · 2012

Researchers exposed 25 healthy men to cell phone-level radio frequency radiation (900 MHz) for 30 minutes before sleep and monitored their brain waves throughout the night. They found that RF exposure altered brain activity patterns during both deep sleep and REM sleep, increasing certain frequencies and changing the normal rhythm of sleep-related brain waves. The study demonstrates that wireless signals can measurably affect brain physiology even after the exposure ends.

Analgetic effects of non-thermal GSM-1900 radiofrequency electromagnetic fields in the land snail Helix pomatia.

Nittby H et al. · 2012

Swedish researchers exposed land snails to cell phone radiation at 1900 MHz (the same frequency used by many mobile phones) for one hour, then tested their response to painful heat. The radiation-exposed snails showed significantly reduced sensitivity to pain compared to unexposed snails, suggesting the electromagnetic fields had an anesthetic-like effect on their nervous systems.

Melatonin modulates wireless (2.45 GHz)-induced oxidative injury through TRPM2 and voltage gated Ca(2+) channels in brain and dorsal root ganglion in rat.

Nazıroğlu M et al. · 2012

Researchers exposed rats to 2.45 GHz radiation (the same frequency used in WiFi and microwave ovens) for one hour daily over 30 days and found it caused brain damage including increased calcium levels in neurons, oxidative stress, and abnormal brain wave patterns. However, when rats were given melatonin supplements, these harmful effects were significantly reduced, suggesting melatonin may protect against WiFi radiation damage to the brain and nervous system.

Human short-term exposure to electromagnetic fields emitted by mobile phones decreases computer-assisted visual reaction time.

Mortazavi SM et al. · 2012

Researchers tested 160 university students to see how 10 minutes of cell phone exposure affected their visual reaction time using a computer test. They found that students responded 9 milliseconds faster after real phone exposure compared to fake exposure, suggesting that cell phone radiation may temporarily sharpen reflexes. The authors suggest this faster reaction time could potentially reduce accidents and human errors.

Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats.

Megha K et al. · 2012

Researchers exposed rats to cell phone frequency radiation (900 MHz) for 2 hours daily over 30 days and found significant cognitive impairment, brain inflammation, and oxidative stress damage. The rats showed worse memory and learning abilities, along with increased inflammatory markers in their brain tissue. This suggests that chronic exposure to microwave radiation at levels similar to cell phones may harm brain function through cellular damage.

Calcium-binding proteins and GFAP immunoreactivity alterations in murine hippocampus after 1 month of exposure to 835 MHz radiofrequency at SAR values of 1.6 and 4.0 W/kg

Maskey D, Kim HJ, Kim HG, Kim MJ. · 2012

Researchers exposed mice to cell phone-level radiofrequency radiation (835 MHz) for one month at power levels similar to what phones emit during calls. They found significant damage to brain cells in the hippocampus, the brain region critical for memory and learning, including loss of protective proteins and signs of brain injury that worsened at higher exposure levels.

Glucose administration attenuates spatial memory deficits induced by chronic low-power-density microwave exposure

Lu Y et al. · 2012

Researchers exposed rats to 2.45 GHz microwave radiation (the same frequency used by WiFi and microwave ovens) for 3 hours daily over 30 days at very low power levels. The radiation caused significant memory and learning problems, and the rats' brain cells had trouble absorbing glucose, which is essential for brain function. However, when researchers gave the rats extra glucose, it reversed the memory problems.

Individual differences in the effects of mobile phone exposure on human sleep: Rethinking the problem

Loughran SP, McKenzie RJ, Jackson ML, Howard ME, Croft RJ. · 2012

Australian researchers exposed 20 people to cell phone radiation before sleep and monitored their brain waves. The radiation increased brain activity during deep sleep, but effects varied greatly between individuals. This suggests previous studies may have missed real impacts by averaging results across all participants.

Browse by Health Effect