Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. · 2013
Researchers exposed rat bone marrow stem cells to 50 Hz electromagnetic fields (the same frequency as household electricity) for one hour daily over 12 days. The EMF exposure significantly enhanced the stem cells' ability to transform into functional brain neurons, complete with working synapses and electrical activity. This suggests that power frequency magnetic fields can directly influence cellular development and may have therapeutic applications for treating nervous system diseases.
Tkalec M, Stambuk A, Srut M, Malarić K, Klobučar GI. · 2013
Croatian researchers exposed earthworms to 900 MHz cell phone radiation for 2-4 hours and found significant DNA damage at all tested levels, even the lowest exposure of 10 V/m. The radiation also triggered oxidative stress (cellular damage from harmful molecules) and damaged proteins and fats in the worms' cells. Importantly, modulated signals like those used by cell phones caused even more DNA damage than continuous radiation.
Payez A et al. · 2013
Iranian researchers exposed wheat seeds to 10-kHz electromagnetic fields for five hours daily over four days. The electromagnetic exposure accelerated seed sprouting and strengthened plant cell membranes while increasing protective antioxidants. This demonstrates that electromagnetic fields can produce measurable biological effects in living organisms.
Burlaka A et al. · 2013
Researchers exposed Japanese quail embryos to extremely low-power cell phone radiation (900 MHz) for over 150 hours and found it caused a persistent overproduction of harmful free radicals in developing cells. The radiation also damaged DNA and overwhelmed the embryos' natural antioxidant defenses. This cellular damage could potentially lead to cancer-causing changes in cells.
Rajabbeigi E, Ghanati F, Abdolmaleki P, Payez A · 2013
Researchers exposed parsley cells to strong static magnetic fields and found the fields boosted antioxidant enzyme activity, protecting cells from damage. However, when combined with iron, the magnetic fields disrupted normal cellular defenses, suggesting these fields can interfere with how cells protect themselves.
Poniedziałek B et al. · 2013
Researchers exposed human blood samples to static magnetic fields for up to 45 minutes. The magnetic exposure significantly altered immune cell activity, changing production of reactive oxygen species that can damage cells. Effects increased with longer exposure times and depended on field orientation.
Poniedzialek B et al. · 2013
Polish researchers exposed human immune cells called neutrophils to extremely low frequency magnetic fields at three different strengths (10, 40, and 60 microTesla) to see how it affected their production of reactive oxygen species - molecules that can damage cells. They found that only magnetic fields tuned to a specific frequency that affects calcium ions could change how these immune cells behaved, with the effect depending on the field strength.
Park JE, Seo YK, Yoon HH, Kim CW, Park JK, Jeon S · 2013
Researchers exposed human bone marrow stem cells to 50 Hz magnetic fields (the same frequency as power lines) at 1 milliTesla for several days. They found that this EMF exposure triggered the stem cells to transform into nerve cells by activating specific cellular pathways and generating reactive oxygen species (ROS). This suggests that power-frequency magnetic fields can directly influence how our stem cells develop and differentiate.
Kurzeja E et al. · 2013
Researchers exposed mouse cells to static magnetic fields while also treating them with fluoride (a known toxic substance). They found that magnetic field exposure actually helped protect the cells from fluoride damage by reducing oxidative stress and normalizing antioxidant enzymes. The magnetic fields appeared to improve cellular energy production and reduce harmful cellular byproducts.
Glinka M, Sieroń A, Birkner E, Cieślar G · 2013
Researchers exposed rats with skin wounds to 40 Hz magnetic fields at 10 mT (millitesla) to see if it would help healing. They found the magnetic field exposure increased antioxidant enzyme activity and reduced cellular damage markers, suggesting the treatment helped protect cells from harmful oxidative stress during the wound healing process.
Calabrò E et al. · 2013
Italian researchers exposed human brain cells to a static magnetic field at 2.2 millitesla (below current safety limits) for 24 hours and found significant cellular damage. The magnetic field reduced the cells' energy production by 30%, increased harmful reactive oxygen species, and altered the structure of cellular proteins and fats. This demonstrates that even magnetic fields considered 'safe' by regulatory standards can disrupt normal brain cell function.
Xiong J, He C, Li C, Tan G, Li J, Yu Z, Hu Z, Chen F. · 2013
Researchers exposed rats to power line-frequency magnetic fields for 14-28 days and found significant damage to brain cell connections in the entorhinal cortex, a memory center. The exposure destroyed dendritic spines that enable brain cells to communicate, potentially explaining EMF-related cognitive problems.
Selaković V, Rauš Balind S, Radenović L, Prolić Z, Janać B. · 2013
Researchers exposed young adult and middle-aged gerbils to 50 Hz magnetic fields at three different intensities for seven days, then measured oxidative stress markers in their brains. They found that magnetic field exposure increased oxidative stress in all brain regions tested, with stronger effects at higher field intensities and in older animals. The effects were still detectable three days after exposure ended, particularly in the middle-aged gerbils.
Rauš S et al. · 2013
Researchers exposed gerbils to 50 Hz magnetic fields (the same frequency as power lines) for 7 days after inducing stroke-like brain damage. The magnetic field exposure actually reduced brain cell death in the hippocampus, the brain region most critical for memory formation. This suggests that certain magnetic field exposures might have protective effects on brain tissue after injury.
Manjhi J, Kumar S, Behari J, Mathur R. · 2013
Researchers studied whether extremely low frequency magnetic fields could prevent bone loss in rats with spinal cord injuries. They exposed injured rats to 50 Hz magnetic fields (17.96 microTesla) for 2 hours daily over 8 weeks and found the treatment significantly prevented osteoporosis, maintaining bone density and mineral content compared to untreated injured rats. This suggests that specific magnetic field therapy might help preserve bone health after spinal cord injury.
He YL, Liu DD, Fang YJ, Zhan XQ, Yao JJ, Mei YA. · 2013
Chinese researchers exposed rat brain cells to power line-frequency electromagnetic fields for 10-60 minutes and found sodium channels increased activity by 30-125%. Since sodium channels control nerve signals, this suggests EMF exposure can directly alter how brain cells communicate with each other.
Gutiérrez-Mercado YK et al. · 2013
Researchers exposed rats to extremely low frequency magnetic fields (120 Hz at 0.66 mT) and found that these fields increased blood vessel permeability in specific brain regions called circumventricular organs. The magnetic field exposure caused blood vessels to dilate and become more permeable to substances that normally can't cross into brain tissue. This suggests that ELF magnetic fields can compromise the brain's protective blood barrier system.
Esmekaya MA et al. · 2013
Scientists exposed E. coli bacteria to power line frequency magnetic fields for 24 hours. While the bacteria survived and reproduced normally, the electromagnetic exposure damaged their cell surfaces, creating holes and destroying outer membranes. This shows EMF can cause cellular damage even when organisms appear healthy.
Calabrò E et al. · 2013
Researchers exposed brain cells to 50 Hz magnetic fields (household electricity frequency) at different strengths. Higher exposures damaged cell membrane proteins and reduced energy production in mitochondria, leading to decreased cell survival and suggesting power-frequency fields harm basic cellular functions.
Balassa T et al. · 2013
Researchers exposed pregnant and newborn rats to 50 Hz magnetic fields (household electricity frequency) during brain development. The exposure altered how brain cells communicate, increasing electrical activity but impairing the brain's ability to form new memories and connections during critical developmental periods.
Bai WF, Xu WC, Feng Y, Huang H, Li XP, Deng CY, Zhang MS. · 2013
Chinese researchers exposed stem cells from rat bone marrow to 50 Hz magnetic fields (the same frequency as power lines) for one hour daily over 12 days. The electromagnetic field exposure helped these stem cells transform into functional brain neurons that could form connections and transmit electrical signals. This suggests that power-frequency magnetic fields might have therapeutic potential for treating nervous system diseases through stem cell therapy.
Wang H et al. · 2013
Researchers exposed rats to microwave radiation at 2.856 GHz for 6 minutes and tested their memory using a water maze. Rats exposed to higher power levels (10 and 50 mW/cm²) showed significant memory problems and brain damage, including damaged brain cells and disrupted connections between neurons. The study reveals that microwave exposure can impair the brain's ability to form memories by damaging the hippocampus, the brain region critical for learning.
Tong J, Chen S, Liu XM, Hao DM · 2013
Researchers exposed rats to 900 MHz cell phone radiation and measured brain activity in the hippocampus, which controls learning and memory. After just 10 minutes, normal brain cell firing decreased while abnormal electrical bursts increased, potentially impairing cognitive function.
Sharma A, Sisodia R, Bhatnagar D, Saxena VK · 2013
Researchers exposed mice to 10 GHz microwave radiation for two hours daily over 30 days, then tested their memory using a water maze. Exposed mice took significantly longer to learn and remember locations, with reduced brain protein levels, suggesting microwave exposure may impair learning and memory.
Moretti D et al. · 2013
French researchers exposed lab-grown brain cells to cell phone radiation at 1800 MHz (the frequency used by GSM cell phones) for just 3 minutes. They found that the radiation caused a 30% decrease in the neurons' electrical activity - essentially making the brain cells less active. This effect was reversible, meaning the neurons returned to normal activity levels after the exposure ended.